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Abstract. A new method for generating highly linear field 
gradients over a large region of space is described. The coil 
assembly consists of two sets of I I  equispaced current lines 
laid on parallel planes whose values can be individually 
controlled. Field expressions are developed in Chebyshev 
polynomials and individual current control permits the 
required field profile to be achieved. Comparison between 
gradients obtained using conventional Anderson coils and 
the present ones shows a great improvement in gradient 
linearity, particularly when a large fraction of the coil 
assembly is considered. 

1.  Introduction 
In either nuclear or electronic magnetic spin resonance imag- 
ing. linear field gradients are required for signal spatial 
deconvolution. Gradient coils should generate a linear field 
over a large fraction of the assembly; this is because coil 
dimensions are necessarily limited by mechanical and power 
constrictions. 

This paper describes a new method of generating field 
gradients by two symmetric sets of n equispaced current lines 
(figure 1 ) .  Coil currents are used a s  independent variables 
and. in principle, can be adjusted to generate any given field 
profile; however. for its practical importance in imaging 
experiments. the properties of the system have been tested on 
constant gradients of the form dB,/dy. Results are compared 

Figure 1. Reference system and view of a set of five equispaced 
current filament>. Distances are normalised following the 
convention used in the  text. 

with the usual Anderson coil configuration (Anderson 1961) 
used in the context of high resolution Nh,iR spectroscopy. The 
better field linearity achievable over a large region is shown to 
be a consequence both of the field approximation used and of 
the larger number of current lines. Use of Chebyshev poly- 
nomials instead of expansion in spherical harmonics permits 
us to control the field shape over the full interval of definition 
of the polynomials. 

Expansion in spherical harmonics, by contrast, gives a 
good fit only around the origin. This is a relevant point when 
the field profile must be controlled over a large fraction of the 
volume enclosed by the coil. In  a recent paper Friedman et a/ 
(1984) approximate magnetic fields by a Legendre polyno- 
mials series using a least-squares technique over the whole 
region of interest, In the present case. we have chosen to fit 
Bl(y) by a polynomial expansion which minimises the integral 
of the generalised squares of errors, i.e. 

I =  j\ w ( y ) ( B , ( y )  - a,lQIi(y) - Q l  e,c,, - " '  -a~>lQ&)Y (1) 
- 1  

where " ( y )  is a non-negative weighting function, Q,,(y) are 
nth degree polynomials. a,,, are the coefficients of the expan- 
sion and the integral is defined on the interval ( -  1, 1). 

Chebyshev polynomials Q , ( y )  = T , ( J )  = cos(k cos-'  y )  
minimise equation (1) for w ( y )  = (1 - y ' ) - ' ' 2 .  Their represen- 
tation of the field Bl(p) has the properties that successive 
maximum errors alternate in sign and are approximately 
equal in absolute value (equal ripple property) and that the 
maximum error over a given interval is as small as possible. 

2. Mathematical treatment and results 
An infinitely long straight current line perpendicular to the 
Y Z  plane in the point (Yll. ZJ produces at (y ,  z )  a field B, 
given by: 

where I ,  is the current value. 
We will consider only the Br component; in fact, in the 

context of magnetic resonances, when the strong magnetic 
field B,) is along the z axis, the contribution of the components 
nents B,  and B,. to the resonant frequency can be neglected. 
For practical purposes the model size has been normalised to 
the distance between current planes by fixing their positions 
at z = i Z , , = f l .  

The n current filaments of the z = 1 plane generate at the 
point (x. y )  a field Br given by 

where 

P , ( y , z ) = ( J  - Y,) /[( , . -Y1) '+(z-Z, , )~] .  (4) 

Ofl the z = 0 plane P,(y .  0) can be approximated up to the mth 
term by (Abramovitz and Stegun 1970) 

h = l  

where y belongs to the interval [ - 1,1]. The coefficients uIi 
which minimise equation (1) are: 

, ? -  I 

U,? = ( 2 i N )  = P,(y,)T"(y,) ( 6 )  
I =  I 
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where 
y /  = cos[(21+ 1)xi2N].  (7)  

The total field B 2  can be written as a sum of terms of the form 
A,T ' ( j ) ,  i .e. 

BT(y, 0) = A, T ' ( y )  
, = I  

i i[ 

where A, are linear combinations of current values given by: 

A, = a , , l ,  + a?, I? + . . . + a,p,I,l. (9) 
An arbitrary field profile f ( y )  can be reproduced by 

equating each Ai  to the corresponding coefficient of the 
Chebyshev expansion of fk). A linear system is then gener- 
ated in the unknown I , ,  which can be solved if m = n. The 
accuracy of the fitting and, in the present case, the linearity of 
the field are determined by the number of current filaments. 

Having normalised to one the distance between the cur- 
rent planes, the separation between external wires is the only 
parameter that must be empirically fixed. Figure 5 shows that 
the amplitude of field fluctuations for sets of different 
numbers of current filaments presents a minimum when the 
distance H between the outermost filaments is about twice the 
plane separation D .  For this reason H has been taken equal 
to 2 0 .  

The magnetic field profile generated at the plane z = 0 by 
set of five filaments is shown in figure 2 and compared with 
the field produced by Anderson coils. Over the whole interval 
of definition of the Chebyshev expansion (i.e. from y = - 1 to 
y = 1, a length equal to coil spacing) the field fitting has a good 
accuracy. while. in case of Anderson coils. the linearity falls 
toward the extremes. 
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Figure 2. Full curve, field produced by a set of five equispaced coils 
along the y axis; triangles. field produced by a set of Anderson 
coils. 

Figure 3(a) compares the linearity achieved by systems of 
9, 7 and 5 filaments and Anderson coils; a magnified view of 
field fluctuations is shown in figure 3(b).  

It must be observed that the Chebyshev expansion of the 
magnetic field Bz(y.  z )  has been performed on the function 
B,(y, 0). i.e. limited to the plane z=O,  and. in principle, 
nothing can be said on the field out of this plane. However 
numerical analysis (figure 4) shows that the field profile of the 
plane z = 0 is maintained, with a good accuracy, on parallel 
planes at increasing distance from the origin. 

3. Experiment 
Practical design requires further considerations on physical 
dimensions of current filaments, which. in the previous math- 
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ematical description. were assumed of infinite length and 
dimensionless. 

The case of finite length can be solved using the same 
procedure and substituting for equation ( 2 )  the correct field 
expression that for filaments extending from x = x, to x = x? is: 

-o.021, , I I , ~ ~ ~ ~ ~ ~ l ~ ; ; l j  
~~ 
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Figure 4. Field fluctuations for a set of nine equispaced filaments 
calculated in the y direction at various planes, i.e. at z = 0 ,  0.4, 0 . 5 ,  
0.6. 



Generalised Anderson coils for  magnetic resonance imaging 

Current sets of finite length should produce along the y 
axis or near to it an essentially linear gradient field. The effect 
of the finite length becomes increasingly important only 
outside this axis. This is shown in table 1 which gives field 
non-linearity in a cubic region of unit size centred on the 

Table 1.  Maximum field deviation times 10' for a unit 
gradient. x. y,  z in normalised units; y ranging from - 0.5 
to 0.5. Top line: results for seven current filaments of 
infinite length; the rest of the table gives results of finite 
length filaments (extending from x = - 2 2 ,  to 2Z,,). 

2 

x 0 0.1 0.2 0.3 0.4 0.5 
~~ 

0.12 0.16 0.30 0.63 1.41 3.20 
0 0.13 0.20 0.42 0.92 1.98 4.27 
0.1 0.12 0.18 0.40 0.90 1.96 4.25 
0.2 0.26 0.24 0.34 0.84 1.90 4.19 
0.3 0.51 0.49 0.44 0.74 1.80 4.0Y 
0.4 0.85 0.83 0.79 0.79 1.65 3.94 
0.5 1.30 1.28 1.24 1.24 1.47 3.75 

origin. The use of normalised spatial coordinates implies that 
the gradient and magnetic fields should also be expressed in 
normalised form. The assumed magnetic field unit is the 
arbitrary field value at coordinates (0,l .O) (consistency with 
the arbitrary units of figures 2-5 is maintained). Table entries 
give the maximum field deviation along a straight line 
between y = - 0.5 and y = 0.5, for an array of points of the 
XZ plane. They have been obtained for infinite length current 
filaments and for filaments extending from xi = - 2Z,, to 
x2 = 22,,. In the considered volume maximum field deviation 
is mostly affected by displacements along the z direction 

I I I I I I 
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Figure 5 .  Maximum amplitude of field fluctuations (calculated 
along the y axis) for various sets of filaments. The tree plots are 
relative to systems of five. seven and nine filaments while the x axis 
gives the relative separation between the two outermost wires. 
D = separation between the planes; d =separation between the 
external coils on each plane. 

< H > 

Figure 6. Sketch of the experimental assembly. One  coil plane is 
shown. 

(3.20X lo-' in normalised units for a unit gradient). The 
finite length of current filaments brings this value to 4.25 x 
10-2 

Use of dimensionless straight line wires is useful for 
illustrative purposes and is valid for very thin windings. 
However, the mathematical treatment previously shown is 
valid for any shape of the winding provided there is a linear 
dependence between field and currents. 

A practical prototype consisting of six adjacent coils has 
been realised to provide field gradients in an ESR imaging 
experiment: this is illustrated in figure 6. The distance D 
between the planes on which the two sets are laid is 60 mm 
and consequently H = 120 mm. Each coil is made of 100 turns 
of copper wire and has a square section 5 X 5 mm' in size. In 
view of the results of table 1 the total coil length L has been 
set to 120". 

The expression for the field of each rectangular coil can be 
approximated by the field B;(y ,  z )  produced by two straight 
wires of finite thickness at a distance d apart and reversed 
currents. For a rectangular coil B2 is: 

+ i d  -1 (Y-jj / [ (Y-y) '+(Z-z) ' ]dZ 
:I+</ 

More accurate values are obtained by integrating the 
expression for B z  given in equation (10). Both integrals have 
an exact solution and the B ;  values give the coefficients P,(y/) 
of equation (6). Applying the previously outlined procedure 
to achieve a unitary constant gradient field ( A ,  = 1, A, = 0 for 
j =  2, . . .6 j  the six coil currents come out to be proportional to  
the numbers 12.337, 5.0603, 1.9964, - 1.9964, 5.0603. 
12.337. The multiplicative factor is a function of the number 
of turns and of the required gradient. For coils of 100 turns 
and for a gradient of 0.1 T m - '  this value is 0.45. 

Deviation from linearity is given in table 2 which also 
makes a comparison with Anderson coils of the same dimen- 
sions. Measured field distribution obtained by this assembly is 

Table 2. Maximum field deviation ( x 
of 0.1 T m- ' .  

T)  for a gradient 

0 3 6 9 12 15 

Present assembly 0.05 0.06 0.11 0.23 0.49 1.1 
Anderson coils 0.4 0.3 0.17 0.6 1.44 2.6 
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shown in table 3. The values have been obtained by a 
gaussmeter which utilises a Hall probe as sensing device 
giving an accuracy of 0.1 YO. 

To test the effect of current fluctuations on field homo- 
geneity we repeatedly introduced in the current of each coil 
an independent random error up to the 0.1 U& of the total coil 
current. The resulting values of maximum field deviation at 
z = 0 had a mean value of 0.051 with RMS 0.0076; this must be 
compared with the value of 0.05 reported in table 2 which 
represents the ripple of the Chebyshev approximation at the 
same position. 

Table 3 .  Measured field (in 1W’T) on the plane X = O .  
y and z are expressed in mm. 

z 9  6 3 0 - 3  - 6  - 9  

9 -9.04 -6.04 -3.03 0.01 3.02 6.03 9.03 
6 -9.04 6.03 3.03 0.00 3.00 6.01 9.02 
3 -9.04 -6.03 -3.03 0.00 2.99 5.99 9.02 
0 -9.00 -5.98 -3.00 0.00 3.01 6.02 9.01 

- 3  -8.97 -5.99 -2.99 0.00 3.02 6.01 9.02 
- 6  -9.03 -6.03 -3.02 0.01 3.02 6.02 9.03 
- 9  -9.04 -6.04 -3.02 0.01 3.03 6.03 9.04 

In the present case the right current values are numeri- 
cally generated by a personal computer interfaced with six 
independent 12-bit digital-to-analogue converters which drive 
the power output stages. Software control also allows the 
correction of DC offset errors of the current generators. 

4. Conclusions 
Using the equal-ripple (or min-max error) properties of 
Chebyshev polynomials, it is possible to fit a given magnetic 
field profile with an accuracy that over a large volume is 
better than that obtained by the spherical harmonics expan- 
sion. It is obvious that these results have been achieved at the 
price of an increased number of coils. One merit of the 
proposed method is its capability of handling a high number 
of field-controlling variables (the n independent currents) by 
means of a set of linear equations. 
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Abstract. A method of fixing the metal electrodes 
simplified the structure of an electric birefringence cell. A 
Kerr cell of optical path length 57 mm and electrode 
separation 3 mm was constructed. The electrodes are tightly 
fastened by a simple means using no glues and spacers. The 
residual birefringence of the cell windows is negligible. The 
overall structure is so simple and firm that it is possible to 
surround the sample compartment with a temperature 
jacket more closely than in any other previous Kerr cell 
design. It is mounted free from vibrations of the circulation 
pump and is able to sustain field strengths of several 
MV m-’. Filling and emptying the sample compartment are 
easy. 

1.  Introduction 
Molecules in solution possessing electrical and optical aniso- 
tropies respond to an applied electric field by orientation and 
macroscopic optical anisotropies are induced. Among other 
electro-optic effects, electric birefringence (the Kerr effect) 
has been of widespread use for molecular characterisation 
because of its high sensitivity (Yoshioka and Watanabe 1969, 
Fredericq and Houssier 1973, O’Konski 1976, Jennings 1979, 
Krause 1981). Measurement of the amplitude and temporal 
response of the transient electric birefringence provides infor- 
mation about the electrical. optical and hydrodynamic 
properties of molecules. 

While recent advances in instrumentation have been 
exploited to refine the technique, defects in the early Kerr cell 
designs (O’Konski and Haltner 1956. Shah eta1 1963, Ikeda e /  
a1 1965, Fredericq and Houssier 1973) have been appreciated 
and many alternatives proposed (Orttung and Meyers 1963. 
Jerrard et al 1969, Bernengo et al 1973, Baily 1975, Coles 
1977, Lewis and Orttung 1978, Khanna er al 1978. Elias and 
Eden 1981. Wijmenga et a1 1985). In all these new cells 
special care has been exercised in the attachment of windows 
to the cell body to reduce the residual birefringence, i.e. an 
optical retardation due to the strain birefringence in the 
windows. often occurring in the absence of an electric field. 
For example, one of the problems in the early cell designs 
which used commercially available spectrophotometer 
cuvettes is that their end window are not free from strain. 
leading to a large residual birefringence in the optical system. 

Recently an elaborate Kerr cell design has been proposed 
by Wijmenga et nl (1985). They devised a special adjustable 
low-strain attachment of Suprasil windows to the cell body 
thereby reducing the residual retardation below a few 
minutes (they are the first Kerr cell manufacturers who stated 
the magnitude of the retardation explicitly). The platinum 
electrodes are fastened parallel with complete precision and 
the lead wires from them are ingeniously insulated from the 
surrounding water jacket. Every joint position is sealed by an 
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