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Abstract In the field of KMR imaging using selective excita- 
tion techniques, a procedure is described whereby image 
information can be recovered with acceptable fidelity in the 
presence of large magnetic field non-uniformities. It entails 
only the running of a reference uniform sample under the 
same conditions as the unknown and performing a kind of 
deconvolution of signals. By this means, a number of 
different kinds of distortion can be compensated, without 
requiring any detailed knowledge of the particular magnetic 
field non-uniformity involved. 

1 Introduction 
One of the biggest problems of extending imaging by NMR 

to larger samples is that of obtaining a sufficiently uniform 
magnetic field over the sample volume. For a system to 
image portions of the human trunk, for example, this means 
regions with a diameter of 0.5 m or so. This can be compared 
with the 5 mm diameter sample region of, say, a high- 
resolution spectrometer, which may have a magnet weighing 
several tonnes. It is clearly out of the question simply to 
scale up all dimensions by a factor of 100. 

To scale realistically, a number of things must be sacrificed. 
Firstly, the magnetic field and hence Larmor frequency can 
be dropped substantially - in proton imaging, usually to 
10 MHz or less. This is normally accompanied by a loss 
in sensitivity in proportion to (frequency)3/2, but is largely 
counteracted by the increased number of spins in the sample. 

The second major sacrifice must be homogeneity of the 
magnetic field. Figures like 1 part in lo7, typical of high- 
resolution systems, are certainly not necessary. However, 
the degree of uniformity required depends on the particular 
imaging method chosen. Perhaps the most restrictive are 
the ‘reconstruction from projections’ method (Lauterbur 
1973, Hutchison et a1 1974) and Ernst’s multidimensional 
Fourier transform method (Kumar et a1 1975). Much less 
restrictive are the sensitive point method of Hinshaw (1974) 
and the various procedures under the general description 
of ‘selective excitation’ (e.g. Mansfield and Maudsley 1976). 
It is our particular variant of this last method which is the 
subject of this paper. 

With both the ‘projections’ method and Ernst’s method, 
the magnetic field over the whole sample must be uniform to 

within the equivalent of one picture element or ‘pixel’. 
For example, if the applied field gradient induces a splitting 
of 10 kHz across the whole sample, and the sample image 
width is 100 pixels, then each pixel is 100 Hz wide and the 
necessary field uniformity is the equivalent of this, or 
2.4 x 10V T for protons. For a Larmor frequency of 10 MHz, 
this represents 1 part in 105. Expressed in another way, the 
original field must be uniform to within 1 % of the maximum 
field difference introduced by the applied field gradient. 
Tn either of the methods mentioned above, information is 
irretrievably lost if the non-uniformity exceeds this small 
percentage, which we shall call the field distortion factor 
(see below). 

The particular treatment of selective excitation which 
we propose can tolerate field distortion factors of up to 
about 50 :d without irretrievable loss of information. 

2 The pulse sequence 
The sequence used and assumed in all the simulations in 
this paper is shown in figure 1. It is a subset of the full sequence 

I-T.-j 
Figure 1 The pulse sequence used for two-dimensional 
imaging. RF is the modulating function for the radio 
frequency magnetic field. Gy and Gz are the magnetic field 
gradient waveforms. The observation period begins at t ~ .  

discussed by us elsewhere (Sutherland and Hutchison 1978) 
in that operations are restricted to the x-y plane; sample 
thickness in the z direction is assumed to be sufficiently small 
that all spin packets having common x and y coordinates 
behave identically. This is a basic selecthe excitation sequence. 
A spectrally tailored 90” RF pulse is applied together with 
a gradient Gy to excite spins in a narrow strip lying close 
to y=O. Then follows a negative portion of Gy, whose 
function is to rephase the spins across the selected strip. 
Simultaneously, G, is driven negative to dephase the spins 
along the strip. Gs is then driven to a constant positive value, 
and the observation period begins at ta. In the ideal case, 
all the spins come back into phase at t l ,  a time T after the 
centre of the RF pulse. This is a form of spin echo, but should 
not be confused with the usual type induced by a 180‘ pulse. 
The in-phase condition is met when 

J I  

“ to 
[;G,dt=O and 1 G,dt=O. (1) 
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Figure 2 Details of the RF modulation and y gradient. RF 
modulation= sinc (3.2 t )  exp (- 5 t*). 
G,=(cos 1.57 t -0.12 cos 4.71 t) /0*88. t is normalised time 
relative to to as origin. 

f 

AY 

Figure 3 Spin magnetisation as a function of normalised 
distance from the centre line of the selected strip, Ay. 
This simulation uses the RF and gradient waveforms of 
figure 2, and Ay  is normalised by setting y=  1. Upper 
curve: A t y /  is the component of magnetisation along y’ in 
the standard rotating coordinate frame, in the case of no 
rephasing. Lower curves : M t  is the transverse magnetisation 
and + the phase, in the case of optimum rephase. 

The actual shapes of the G, and Gy waveforms are unim- 
portant, provided that the following conditions are met : 
(i) during the RF pulse, Gz=O and Gy=  Gyt=constant; 
(ii) during the observation period, Gy = 0 and G,+ = constant, 
Otherwise signal processing becomes extremely complicated. 

There is no need to have sharp-edged rectangular gradient 
drive waveforms, which is very useful in practice since the 
field gradient windings present an inductive load. 

Figure 2 shows the shape of the gradient drive Gu, and the 
RF modulation is an apodised sinc function to give a roughly 
rectangular spectral profile. The gradient drive waveform 
is composed of fundamental and third-harmonic sine waves, 
and has been implemented quite successfully on the scale 
required using thyristor switching and resonant LC circuits 
(see appendix). 

Figure 3 shows the spin magnetisation across the selected 
strip, firstly with no rephasing and then with optimum 
rephasing. Myi is the magnetisation in the rotating coordinate 
frame defined by the natural Larmor precession of spins 
located at x=y=O (in the absence of R F  or gradient fields, 
the spin magnetisation maintains a fixed orientation in 
the rotating frame). The directions of y and y’ coincide at 
time to. Mt is the amplitude of the transverse magnetisation 
and 4 its angle relative to they’ direction. That is, 

?My’=iMtcos +; M,‘=Mtsin+. (2)  

In practice, + is also the phase of the nuclear induction 
signal. Since the signal from any region of the selected strip 
is proportional to the vector integral of transverse magnetisa- 
tion across the strip, it is in our interests to have as little 
phase variation as possible across the strip -hence the 
desirability of the rephasing addition to the GZ/ waveform. 
The phase is within k 5” over most of the strip width, which 
is quite acceptable. 

To select a different strip, the carrier frequency of the RF 

pulse is shifted by an amount hJ: In practice, this must be 
done using phase-lock techniques so that the phase of the 
carrier as measured at the centre of the RF pulse (time t o )  
remains unchanged. This procedure selects a new strip, 
parallel to the original, at 

where y is the gyromagnetic ratio of the spins, and Gy+ 
is the value of Gy during the RF pulse. Since Gu+ is not 
perfectly constant, both in expected practice and in the 
simulation, a certain degradation in the strip selection 
should occur as A f is increased. Analysis shows, however, 
that the result is still acceptable after moving the strip through 
20 times its width. 

3 Effects of field non-uniformity on the signal 
Let us suppose that the magnetic field applied to the sample 
consists of a uniform part HO and an error field E ( x ,  y )  
which are not time-dependent. Taking into account the 
time-dependent gradient fields, we obtain the full expression 
for the field seen by a spin packet at (x, y )  at time t :  

Hz=Ho+E(x,y)+xGz(t)+yG,(t). (4) 

It is easily shown that any given spin packet now experiences 
an additional phase error A ~ E  which depends only on the 
inhomogeneity E and the time t after the centre of the RF 

pulse : 
A+E= 27iytE. 

We now consider the signal originating from a short 
section of the selected strip. During the observation period 
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(when Gz+ is present) and in the absence of the error field 
E, the phase of the spin precession, relative to  the y‘ direction, 
will be 

(6) 
where ~ = f l - t ~ ,  the time of the spin-echo centre. In the 
presence of E, the total phase shift 4~ will be the sum of 
(5) and (6): 

4 = 2n7xGz+(t - T )  

$T = 4 + .L$E = 2ry[xGz+(t  - T )  + tE] .  (7 )  
If, now, the short section is considered to be non-infini- 

tesimal in extent, then it can be considered as giving rise to  
a group spin echo, whose centre occurs when all the spins 
are most nearly in phase with each other, i.e. 

Applying this criterion to equation (7 )  yields an expression 
for the time of the group spin echo: 

(9) 

Equation (9) may now be rearranged to  give the time 
displacement AT of the group spin echo due to  the error 
field E:  

The importance of this expression lies in information 
theory, which tells us that the group spin-echo centre must 
lie within the observation period, otherwise information 
concerning the group is irretrievably lost. This places a 
lower bound on IT ,  namely 

AT > t 1 -  ta. (11) 
Since the observation period can be extended indefinitely, 

there is no well defined upper bound on AT;  spin-spin 
relaxation processes will cause a gradual deterioration as 
IT  is increased. Field foldback occurs when aE:ax= - Gz+, 
the condition when AT= oc, and the position along the 
strip is no longer uniquely determined by He, again signifying 
loss of information. 

In the presence of an indeterminate error field E, with 
its concomitant phasing errors, the simple Fourier transform 
of the nuclear induction signal no longer represents the line 
profile, since it requires the existence of a reference time 
when all the spins are in phase. However, information 
theory also tells us that, as long as the above constraints on 
IT  are met, the line profile can be recovered completely. 
The method is described in $5.  

4 Effects of field non-uniformity on the selection process 
The locus of the selected strip is given in general by 

Afly = E(x,  U) + yGg+ (12) 

which reduces to  equation (3) in the absence of an error 
field. It is perhaps more instructive at  this point to  consider 
a particular type of error field consisting only of second-order 
terms : 

E = k( x2 +US), (13) 

This is a circular pattern of the kind that might be expected 
in an air-cored magnet based on circular coils. 

We can now define a field distortion factor D, briefly 
referred to  in $1, as 

(14) 

where G is the applied gradient at the time in question, and 

Ymax is the maximum radius of the sample. D =  1 represents 
the limiting case of field foldback at  the edge of the sample. 
In particular, during the observation period 

Figure 4 shows the locus of the selected strip and the field 
contours during (a )  excitation and (b) observation, for 

io1 Ib; 

Figure 4 Field contour lines and the locus of the selected 
strip during (a )  excitation and (b) observation, when field 
distortion of the form given by equation (13) is present. 

Af=O. The curvature of the selected strip is proportional 
to  D y ,  the distortion factor during excitation being, in this 
case, approximately 0.3. Two further effects occur when 
h f i s  altered to  obtain different image lines. 
(1) The width of the selected strip is proportional to  the 
spacing of the contour lines, which alters across the sample. 
Hence, signal sensitivity will vary according t o  the line 
chosen. 
(2 )  The line spacing and curvature alter across the sample, 
giving rise to  geometrical distortion of the image. 

From figure 4(b) it can be seen that there is a bunching 
of contour lines towards one end of the strip, which will 
manifest itself as a location error of features on the line 
profile, i.e. another geometrical distortion. The effect is 
proportional to  Dz,  equal to  0.3 in this diagram. The full 
geometrical distortion can be represented by a grid formed 
by superimposing the field contour lines from figures 4(a) 
and (b ) .  It should, however, be noted at  this stage that in 
any practical system Gy+ will generally be many times larger 
than Gz-, thus reducing Dg substantially. Figure 4(a) is 
thus rather exaggerated, and one would expect the selected 
strips to  be much straighter and more evenly spaced. 

5 Recovery of the line profile 
There are two stages in this process. The first stage corrects 
the phase error. Contrary to  expectation, this does not 
require a detailed knowledge of the error field E. The proce- 
dure is t o  run the system with a reference sample, which 
is simply a uniform distribution of spins, and obtain the 
reference spin-echo waveform ~ ( t ) .  In practice this entails 
filling the sample region with water (for proton imaging), 
preferably doped to  bring its spin-spin relaxation time 
TZ to  a value similar to that of the unknown sample. The 
unknown sample is then run with identical settings to  obtain 
its spin-echo waveform s ( t ) .  The waveforms s and Y are 
undefined for t < f A  and must be assumed t o  be zero. The 
Fourier transforms S ( w )  and R ( w )  are then obtained and an 
intermediate function is computed : 

F(w) = S(w)/R(w).  (16) 

The function F has now been corrected in phase and 
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amplitude with respect to the reference. The reverse trans- 
form f ( t )  is effectively s ( t )  deconvoluted by v(t) .  However, 
the sidebands of F i n  t space are less than ideal, being asym- 
metrical ; furthermore, this asymmetry is w-dependent. 
The simplest way to correct this is to deal with the function 
f ( t ) ,  f ( t )  represents the sidebands of F and has a ‘before’ 
sideband ( t  < 0) and an ‘after’ sideband ( t  >O) .  Ideally 
these should be matched, but they are not, and it is the 
‘before’ sideband which suffers most from the effects of 
phase errors. The solution is simply to remove this sideband 
according to the following scheme. Let 

h( t )  = f ( t ) ,  t > O  
h(O) = + f ( O )  (17) 
h( t )  = 0, t <o. 

Then let H ( w )  be the Fourier transform of h(t) .  
The real part of H ( w )  is taken as the line profile. The 

imaginary part is its Hilbert transform which is of no interest 
since it contains no extra information. The assignment 
h(O)=+f(O) is largely irrelevant when the ordinates t and w 
are continuous, but it becomes important in computer 
processing, where they are stepped in discrete intervals. 
Without this assignment, the DC level of the final line profile is 
incorrect. 

6 Simulated examples 
Figure 5 shows the effect of the procedure on a simulated 
sample consisting of three rectangular pockets of spins, 

H I w ) pdl-,-J-7L ;,J y’ \- *f P !!-J r- 1-d ’-+. 
3.3 5.3.2 3 .0 .5  

! 3 !  ( b l  (c i  

Figure 5 Computer simulation waveforms for the functions 
S, R and H for a sample of three rectangular pockets of 
spins. Results are shown for three different field distortion 
factors: (a)  D=O, (6) D=0.2 and ( c )  D=0.5. 

subject to the field non-uniformity described by equation 
(13). In all cases the observation period extends from t l -+r 
to t l+2r.  The phase error .h$~ is proportional to D and 
amounts to approximately 10 rad at the edges of the sample 
for D=0.5. 

It is easily seen that the function H ( w )  is a closer representa- 
tion of the original spin distribution than F, even when 
there is no field distortion. Note also the bunching of detail 
towards the left-hand side of the line profile: this is a conse- 
quence of the geometrical distortion of the field contour 
lines illustrated in figure 4(6). We note that, although the 
amplitude of S is affected by this bunching process, those 
of F and H are not, being compensated by a similar effect 
on R(w). Technically, it should be possible to ‘unbunch’ 
H ( w )  using the phase information present in R(w),  but 
this would still leave geometrical distortion due to the curva- 
ture of the contour lines in figure 4(b) and curvature of the 
selected line (figure 4(a)). These various geometry corrections 
are not within the scope of this paper. 

There is a certain amount of ringing evident on the H ( w )  
waveform. In part this is due to the sharp cut-off of s(r) and 

v( t )  in the time domain, and a certain amount of apodisation 
of these functions would probably help. However, another 
factor is the out-of-band behaviour: the reference sample 
is necessarily of finite extent, so that for values of w outside 
the normal range, R(w) will approach zero. Since S(w) is 
divided by this to form F ( w ) ,  the latter becomes the ratio 
of two small quantities, thus giving rise to large spurious values. 
This would especially affect the real situation where noise 
is present. The spurious values of F only occur in out-of-band 
regions and so do not appear on the F waveform, but they 
generate ripples on the H waveform which extend back 
into the viefied region. By incorporating a conditional 
procedure of the form 

F(w)=O if lR(w)l < E  (18) 

and choosing E appropriately, these effects can be reduced. 
This kind of problem is inherent in any deconLolution 
process. In the simulated examples, E was set to lo:  of the 
midband amplitude of R, mainly to avoid the disaster of 
division by zero, but a higher value of E might proLe more 
useful. 

7 Conclusions 
A procedure has been found whereby image information 
can be recovered with acceptable fidelity in the presence 
of large magnetic field non-uniformities. It is operable at 
a field distortion level (D=055) which is at least an order 
of magnitude worse than that at which reconstruction from 
projections breaks down. Although geometrical distortions 
are introduced, the signal level ( H ( w ) )  corresponds to the 
spin density in the appropriate region. It requires only that 
a reference uniform sample be run under the same conditions 
as the unknown. 

The procedure will also compensate for spatial variations 
in sensitivity due to non-uniformity of the RF magnetic field. 
However, in practice, a number of effects may degrade its 
performance. Probably the most severe of these are phase 
shifts due to eddy-current induction within the sample. 
To get ideal performance, this would require that the dielectric 
properties and geometry of sample and reference be identical, 
which is obviously impossible to achieve, but some sort of 
approximate match may be usable in practice. 

Since the transverse magnetisation of a spin packet decays 
with a time constant T2, differences in TZ between different 
regions of the sample, or between sample and reference, 
will alter the performance. The effects are unlikely to be 
too severe provided that T is substantially less than T2. 

The effects of non-uniformity of the gradient fields have 
not been considered in this paper. We believe that, to a 
first order, the only effect is a location error, but this remains 
to be investigated. 

The procedure as described has been two-dimensional, 
i.e. confined to the x-JJ plane. In the three-dimensional case, 
with non-uniformity in z, this plane would become a curved 
surface. If additional selection is carried out in z ,  this curved 
surface is the one selected, and not only does it have a finite 
selection thickness Az, but also Az will vary as a function 
of x and J’, giving rise to variations in spin sensitivity. Once 
again, these variations are compensated by our procedure. 

The magnetic field non-uniformity function E must be 
the same for reference and unknown. In practice, this \ o d d  
mean that large ferromagnetic objects in the vicinity such 
as filing cabinets and oscilloscopes, must not be moiled 
between running the reference and running the sample. 
E also includes any long-term drift of the main field, so that 
field stability remains as important as before. 
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Appendix Production of the y field gradient waveform, Gg 
The circuit used is shown in figure 6. The current in the 

s w  1 

+ 

L ; L1 

Field 
I gradient 
I winding 
I 

I -  

Figure 6 The electrical circuit used to generate the G2/ 
gradient waveform. 

gradient windings LI is 

where t is measured from the instant of firing SCRl. On 
the assumption that L1 is fixed, the design formulae are 

I(t)  = l o  (sin ut + k sin 3wt) (A.1) 

3 + k  
cl = (3 + 9k) w’L1 

(A.4) 
1 -=9  W4ClCZLl. 

La 
The condition for a maximally flat top is k = Q, In practice 

it is better to make k slightly greater (0.12-0.14). There is 
also a droop caused by resistance in LI  and Lz, which can 
be compensated by lowering C2. Values used in practice were: 
L1= 10 mH, Lz= 2-7 mH, CI = 64 pF, and CZ= 40 pF, giving 
a half-cycle of approximately 2.8 ms. VR1 is used to adjust 
the amplitude of the rebound half-cycle which occurs 
naturally when D1 is incorporated. This rebound half-cycle 
now constitutes the rephase gradient pulse, with the added 
bonus that CI is left partially charged in preparation for the 
next sequence. Swl is left open until the observation period 
has passed, then it is closed to charge C1 fully through R. 
This delay is necessary to satisfy Gy=O during observation, 
since the charging current flows in LI. 
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