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Diffusional Kurtosis Imaging: The Quantification of Non-
Gaussian Water Diffusion by Means of Magnetic

Resonance Imaging

Jens H. Jensen,'* Joseph A. Helpern,' Anita Ramani,’ Hanzhang Lu," and

Kyle Kaczynski®

A magnetic resonance imaging method is presented for quan-
tifying the degree to which water diffusion in biologic tissues is
non-Gaussian. Since tissue structure is responsible for the de-
viation of water diffusion from the Gaussian behavior typically
observed in homogeneous solutions, this method provides a
specific measure of tissue structure, such as cellular compart-
ments and membranes. The method is an extension of conven-
tional diffusion-weighted imaging that requires the use of
somewhat higher b values and a modified image postprocess-
ing procedure. In addition to the diffusion coefficient, the
method provides an estimate for the excess kurtosis of the
diffusion displacement probability distribution, which is a di-
mensionless metric of the departure from a Gaussian form.
From the study of six healthy adult subjects, the excess diffu-
sional kurtosis is found to be significantly higher in white matter
than in gray matter, reflecting the structural differences be-
tween these two types of cerebral tissues. Diffusional kurtosis
imaging is related to g-space imaging methods, but is less
demanding in terms of imaging time, hardware requirements,
and postprocessing effort. It may be useful for assessing tissue
structure abnormalities associated with a variety of
neuropathologies. Magn Reson Med 53:1432-1440, 2005.
© 2005 Wiley-Liss, Inc.
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The diffusion of water through a biologic tissue can be
regarded as a random process. Hence, the chance of a
particular water molecule diffusing from one location to
another in a given period of time is governed by a proba-
bility distribution. In the simplest models, this distribu-
tion has a Gaussian form with its width (i.e., standard
deviation) proportional to the diffusion coefficient. How-
ever, for time intervals on the order of tens of milliseconds,
the complex structure of most tissues, consisting of vari-
ous types of cells and their membranes, can cause the
diffusion displacement probability distribution to deviate
substantially from a Gaussian form (1). This deviation
from Gaussian behavior can be quantified using a conve-
nient dimensionless metric called the excess kurtosis.
Since the deviation from Gaussian behavior is governed by
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the complexity of the tissue within which the water is
diffusing, this excess diffusional kurtosis can be regarded
as a measure of a tissue’s degree of structure.

In this article, we describe a method, which has previ-
ously been presented in an abbreviated form (2), for esti-
mating the excess kurtosis of water diffusion in vivo by
means of pulsed-field-gradient MRI. We term this method
diffusional kurtosis imaging (DKI). The method is based on
the same type of pulse sequences employed for conven-
tional diffusion-weighted imaging (DWI), but the required
b values are somewhat larger than those usually used to
measure diffusion coefficients. In the brain, b values of
about 2000 s/mm? are sufficient, which can now be readily
obtained on modern clinical MRI systems. Thus, DKI pro-
vides a practical clinical technique for quantifying non-
Gaussian water diffusion and thereby for probing the mi-
croscopic structure of biologic tissues.

DKI has a close relationship to g-space imaging tech-
niques (3), and g-space imaging methods have indeed re-
cently been employed to estimate diffusional kurtosis
(4,5). The principal difference between g-space imaging
and the approach presented here is that g-space imaging
seeks to estimate the full diffusion displacement probabil-
ity distribution rather than just the kurtosis. As a conse-
quence, g-space imaging is more demanding in terms of
imaging time and gradient strengths. A key idea of the
work presented here is that the excess diffusional kurtosis
may be approximately determined from just the first three
terms of an expansion of the logarithm of the NMR signal
intensity in powers of b. It is for this reason that measuring
the diffusional kurtosis requires only modest increases in
b values beyond those typically employed for DWIL

In addition to presenting the underlying theory of DKI,
we also show parametric maps of excess diffusional kur-
tosis in the human brain and in a phantom. In particular,
we find sharp differences between the diffusional kurtosis
in white and gray matter, confirming the preliminary re-
sults reported by Jensen and Helpern (2). We believe that
DKI is potentially of value for the assessment of neurologic
diseases, such as multiple sclerosis and epilepsy, with
associated white matter abnormalities. Additionally, DKI
may be useful for investigating abnormalities in tissues
with isotropic structure, such as gray matter, where tech-
niques like diffusion tensor imaging (DTI) are less appli-
cable.

THEORY
Definition of Diffusional Kurtosis

Consider water molecules diffusing within a selected re-
gion of interest. If the initial position of a water molecule
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FIG. 1. Three isotropic diffusion displacement probability distribu-
tions. The corresponding diffusion coefficients are identical, but the
values for diffusional kurtosis as calculated from Eq. [2] are different.
The solid curve with K = 0 is the Gaussian form obtained by setting
Dt = 1/2 in Eq. [3].

is r, and the final position is ry, then the net displacement
is s = r, — r,. Let P(s, t) be the probability that a water
molecule diffuses a given net displacement in a time . The
average value of an arbitrary function F(s) is

(F(s)) = fdasP(s,t)F(s). [1]

Now suppose we are interested in diffusion in a particular
direction specified by a unit vector n. Then the excess
diffusional kurtosis in this direction is

((n - 8)")

K(t) = <(n,s)2>2 -

(2]

Equation [2] represents a straightforward application of
the general definition of the excess kurtosis to diffusion
(6,7). The term “excess kurtosis” is often shortened to
“kurtosis,” although kurtosis is also sometimes used to
mean just the first term on the right-hand-side of Eq. [2].
Here we use “excess diffusional kurtosis” and “diffusional
kurtosis” interchangeably to refer to K{(%).
For isotropic Gaussian diffusion,
P(s,)=(4wDt)"*? exp (—s * s/4Dt), [3]
where D is the diffusion coefficient. In this case, one may
readily show that K(t) vanishes. If P is more sharply
peaked than a Gaussian, K is negative, and if P is less
sharply peaked than a Gaussian, K is positive (6,7). Thus K
provides a dimensionless metric of the degree to which the
diffusion displacement probability distribution is non-
Gaussian. Figure 1 shows examples of three isotropic dis-
placement probability distributions with identical diffu-
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sion coefficients, but different values of K. The diffusion
coefficient in a direction n is, in general, defined by

1
D(t) = o {(n - s)?). [4]

Diffusional Kurtosis and the NMR Signal

Consider a standard pulsed-field-gradient NMR sequence
with a gradient strength g, a pulse duration 8, and a time
interval A between the centers of the diffusion sensitizing
gradient pulses (8). The central result of this paper is that
this type of sequence can be used to approximately mea-
sure the diffusional kurtosis. The key relationship is

In [S(b)] = In [S(0)] — bD,

app

1
+gb2D,Z K., + O(b%), [5]

app~app

where S(b) is the signal intensity at the echo time, D, is
the apparent diffusion coefficient, and K, is the apparent
diffusional kurtosis (2). The parameter b is given by the
usual expression b = (y8g)*(A — 8/3), where v is the proton
gyromagnetic ratio. In carrying out the expansion of Eq.
[5], it is assumed that b is changed by varying the gradient
strength g with the timing parameters & and A being kept
fixed. Just as D,,, is an estimate for the diffusion coeffi-
cient in the direction parallel to the orientation of diffu-
sion sensitizing gradients, K, is an estimate for the dif-
fusional kurtosis in this same direction.
More precisely,

K(A) = limK,,,(A9), [6]
8§—0

so that the apparent diffusional kurtosis approaches the
true diffusional kurtosis in the limit of short gradient pulse
durations, which is analogous to the relationship between
D,,,, and the true water diffusion coefficient D. The valid-
ity of Eq. [6] requires that there is no net flow, which
implies (s)=0 for all times t, and that the effects of inho-
mogeneous T, relaxation are negligible. The derivation of
Eq. [6] is outlined in the Appendix.

The expansion of Eq. [5] is essentially a Taylor expan-
sion of In[S(b)] in powers of b. Similar expansions have
been previously considered by Yablonskiy et al. (9) and by
Liu et al. (10). However, neither of these works makes the
connection to the diffusional kurtosis, which was origi-
nally observed by Jensen and Helpern (2).

Special Cases

As an example, consider a region of interest consisting of
N noninteracting compartments, each containing a frac-
tion p; (i = 1, 2, ..., N) of the water molecules. Assume
that the diffusion is Gaussian in each compartment with a
diffusion coefficient D,. Then the diffusional kurtosis is
simply

K(t) =3 —=—, (7]




var(D) = Xp(D; — D). 8]

i=1 i=1

So in this case, the diffusional kurtosis reflects diffusional
heterogeneity. It may also be noted that for this particular
model K,,,(A, 3) = K(A) so that the expansion of Eg. [5]
will yield the exact diffusional kurtosis for any duration &
of the gradient pulses.

In biologic tissues, the diffusional kurtosis may be af-
fected by the exchange of water between compartments
(e.g., the extracellular and intracellular spaces). This can
be illustrated by using the two-compartment exchange
model studied by Karger (1) and by Lee and Springer (11).
For this model, one may derive the expression

K = 6 var(D) 1 { 1 ],

ot a1 191

where a = t/(7, pp) = t/(1}, p,). Here 7, and 7, are the water
residence times for the two compartments, and p, and p,,
(= 1 — p,) are the corresponding water fractions. The time
Tm = TaPp = Tp Pg 1 the water mixing time for the system.
The diffusional kurtosis of Eq. [9] approaches that of Eq.
[7] for t << 7,,, and decreases as 1/t for t >> 7,,,. Thus water
exchange decreases the diffusional kurtosis for long times.

In both of the above examples, the diffusional kurtosis is
nonnegative. However, negative values are not strictly ex-
cluded. For instance, suppose the region of interest con-
sists of water confined to spherical pores all with the same
radius. For long times, the water molecules will be uni-
formly distributed within each of the pores. In this limit,
one may show that the diffusional kurtosis approaches
—3/7, implying that the diffusion displacement probabil-
ity distribution is more sharply peaked than a Gaussian
distribution. If the region of interest consists of spherical
pores of two different radii, R, and R,, and water fractions,
P. and p,, then for long times the diffusional kurtosis is
given by

18 <Rt + ppRy?
limK()=— - Pots

7 [paBaZ + prbz)z - [10]

t—o

If 0.67188 < R,/R, < 1.48837, the diffusional kurtosis of
Eq. [10] is negative for all values of the water fractions.
However, outside this range, the water fractions can be
chosen to make K positive. So the heterogeneity of having
two substantially different pore sizes can dominate the
narrowing of the probability distribution caused by the
restricted diffusion. The maximum kurtosis occurs when
p. = B,2/(R,?+ R).

These examples suggest that the diffusional kurtosis
tends to increase with diffusional heterogeneity and can be
altered by water exchange or by diffusion barriers. It
should also be noted that the kurtosis may have a complex
temporal variation and can even change from being posi-
tive to negative with increasing time. The derivations of
Egs. [7], [9], and [10] are discussed in the Appendix.

Jensen et al.

Diffusional Kurtosis Tensor

In general, the measured diffusional kurtosis may depend
on the direction of the diffusion sensitizing gradients. This
dependence on direction can be described by a tensor with
15 independent components, just as the directional depen-
dence of the diffusion coefficient can be described by a
tensor with 6 independent components (12). In order to
determine the full diffusional kurtosis tensor, the diffu-
sional kurtosis must therefore be measured in at least 15
different directions.
We define the diffusional kurtosis tensor to be

Wijk]( =09 <SiSjS1<S1> - <SiS;'><S1<SIES_. S<;isk><sjsl> - <SiS1><SjSk>,

[11]

with s; indicating a component of the displacement vector
s. The diffusional kurtosis tensor has a rank of 4 and 81
components. Because it is fully symmetric with respect to
an interchange of indices, only 15 components are inde-
pendent. From Egs. [2] and [11], one sees that

13 ’
|\32D“(t)‘| 3 3 3 3
;2 : 2 E Z Eninjnknlvvijkl(t),

i=1j=1 k=1 I=1

K(t) =

[12]

where n; is a component of the direction vector n and

1
Di(t) = ﬂ<sisj>! [13]

is the diffusion tensor. Hence if D;; and W,;; are known,
then the kurtosis in any direction can be determined. For
isotropic diffusion, Egs. [11] and [12] imply

1
Wig(t) = 3 (8;0u + 33 + 8;8)K(2).

1

[14]

In analogy to Eq. [5], the apparent diffusion and diffu-
sional kurtosis tensors are derived from the expansion

In[S(b)] = In[S(0)] — bS Enin;D%PP

i=1j=1

2
1 1 3 3 3 3 3
+5 bZ(SED?FP) > > Enininknﬂ/lf;?}}},’ +0(b%). [15]

i=1 i=1j=1 k=1 I=1

In the limit of short durations for the gradient pulses, the
apparent diffusion and diffusional kurtosis tensors ap-
proach their ideal values given by Egs. [11] and [13]. The
expansion of Eq [15]. is similar to one discussed by Liu et
al. (10).
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Table 1
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MRI Estimates for the Mean Diffusional Kurtosis and Diffusion Coefficient Obtained from Six Subjects

Diffusion coefficient

Region Direction Diffusional kurtosis 5
(nm?®/ms)
Cortical gray matter Phase 0.86 = 0.27 0.74 = 0.38
Cortical gray matter Read 0.80 = 0.09 0.82 = 0.12
Cortical gray matter Slice 0.79 + 0.07 0.76 + 0.08
Frontal white matter Phase 1.33 = 0.22 0.96 = 0.16
Frontal white matter Read 1.31 £ 0.17 0.91 = 0.10
Frontal white matter Slice 1.60 + 0.25 0.78 = 0.06

Note. The uncertainties indicate standard deviations.

METHODS
Human Studies

Our human studies were performed using a Siemens 3.0-T
Allegra MRI scanner and were approved by the institu-
tional review board. Dual spin echo diffusion-weighted 2D
EPI images were acquired with b values of 0, 500, 1000,
1500, 2000, and 2500 s/mm? in six healthy adult volun-
teers, who all gave informed consent. The images were
oriented axially with a slight tilt. For all the subjects, three
sets of images were obtained, each with a different direc-
tion (phase, read, and slice) for the diffusion sensitizing
gradients. The phase encoding direction was from anterior
to posterior. The acquisition matrix was 128 X 128, the
voxels were isotropic with a volume of 8 mm?, 3/4 partial
Fourier encoding was employed, and each image was ob-
tained by averaging the data from 12 excitations. The tim-
ing parameters were TE = 106 ms, A = 36.1 ms, and & =
34.5 ms. The diffusion time interval A is here not defined
precisely in the same manner as for a standard Stejskal—
Tanner sequence, since a dual spin echo sequence was
employed to reduce eddy currents (13). Rather, A has been
calculated so that the usual expression b = (y8g)*(A — 8/3)
remains valid.

Parametric maps of D,,, and K, were created by fitting
the image signal intensities on a voxel-by-voxel basis to
the formula

1 2y 1/2
Sexp:{nz-i{So exp (—bDalDlD + gszﬁppKappﬂ } ,  [16]

where S, is the experimental signal intensity and n is the
background noise. Equation [16] was fit to the data using
the Levenberg—Marquardt method (7) with S, Dpps and
K., as free parameters. The noise parameter m was esti-
mated from the mean signal intensity in air. This proce-
dure should give reliable estimates for K,,, provided an
appropriate range of b values is used. The b values should
be large enough so that the effect of the O(b*) term in the
exponential is large compared to that of the noise, but the
b values should be small enough so that the excluded
O(b®) term (cf. Eq. [5]) is negligible.

Region of interest analyses were carried out in both
cortical gray matter and frontal white matter to obtain
quantitative estimates for typical values for the diffusion
coefficient and the diffusional kurtosis. For the intersub-
ject comparisons used to construct Table 1, regions of
interest were chosen by eye, with the assistance of a neu-
roradiologist, containing 10 voxels for gray matter and 12

voxels for white matter. White matter regions of interest
were circular, but gray matter regions of interest were
irregular due to the thinness of this structure. The signal
intensities within each region of interest were averaged
prior to fitting with Eq. [16].

Phantom Study

A phantom was constructed consisting of six 60-mL plas-
tic bottles submerged in a water bath. One bottle contained
pureed asparagus to simulate an isotropic tissue with a
nonzero kurtosis. The remaining five bottles contained
sucrose solutions with sucrose concentrations of 5, 10, 15,
20, and 25%. Sucrose lowers the water diffusion coeffi-
cient (14), but is not expected to affect the diffusional
kurtosis. The phantom was imaged on a Siemens 3.0-T
Trio MRI scanner using the same type of sequence and b
values as for the human studies. The image parameters
were TE = 108 ms and slice thickness = 5 mm; the acqui-
sition matrix was 128 X 128, and the field of view was
256 X 256 mm. Images were postprocessed in the same
manner as for the human studies.

RESULTS
Human Studies

Figure 2 shows the signal intensity as a function of b in
gray and white matter regions of interest for one subject.
The region of interest for cortical gray matter contained 17
voxels, while the region of interest for frontal white matter
contained 19 voxels (these regions of interest were opti-
mized for this particular subject and are somewhat larger
than those used for the construction of Table 1). A clear
departure from monoexponential behavior is apparent in
both gray and white matter, indicating a substantial devi-
ation from Gaussian diffusion. The lines are fits to Eq. [16],
showing that the data are well described by the theoretical
form. A marked degree of directional anisotropy is appar-
ent in white matter.

The robustness of our estimates for the diffusional kur-
tosis is illustrated by the uncertainties indicated in Fig. 2.
For the results in this figure the fractional errors range
from 7 to 17%. This level of precision is typical for our
method. However, the precision of diffusional kurtosis
estimates decreases rapidly if the maximum b values are
reduced substantially below 2000 s/mm?.

Parametric maps of the apparent diffusional kurtosis
and the apparent diffusion coefficient for the three orthog-
onal directions are given in Fig. 3 for one subject. The last
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FIG. 2. Signal intensity versus b in three orthogonal directions for
(@) cortical gray matter and (b) frontal white matter obtained from
two regions of interest in one subject. The lines are fits using Eq.
[16]. The apparent diffusional kurtosis is nearly isotropic for gray
matter, but depends strongly on direction for white matter. The

uncertainties in K, are standard error estimates.

column shows the average over all three directions. The
maps have been slightly smoothed to reduce the effect of
noise and have been windowed so that voxels with nega-
tive values appear black. In a few voxels, the diffusional
kurtosis did converge to negative values, but these may be
artifacts of noise or other confounding effects. As previ-
ously discussed, negative values for the diffusional kurto-
sis are allowed theoretically, but our results suggest a
predominance of positive values. The hyperintense circu-
lar feature apparent on the upper left side of the diffu-
sional kurtosis map (subject’s right brain side) in the slice
direction is similar to features observed in other subjects.
The asymmetry of the image may be due to the slice
orientation or intrinsic asymmetry of the brain. For all the
subjects of this study, the raw diffusion-weighted images
were evaluated by a neuroradiologist and judged to be
normal.

Jensen et al.

Figure 4 shows a scatter plot of the average K,,,, versus
the average D,,, obtained from the all the positive-value
voxels of the images in Fig. 3. The Spearman rank-order
correlation coefficient is —0.29, indicating a weak correla-
tion between the diffusional kurtosis and the diffusion
coefficient. This suggests that K,,, provides additional
information on the water diffusion properties in the brain.
The data points in Fig. 4 with diffusion coefficients above
1.5 wm?/ms probably correspond to voxels containing
some cerebrospinal fluid.

Table 1 gives mean MRI estimates for the diffusional
kurtosis and the diffusion coefficient in cortical gray mat-
ter and frontal white matter based on our data from six
subjects. The overall average diffusional kurtosis is 0.82 *
0.03 in gray matter and 1.41 = 0.11 in white matter, which
is consistent with the greater degree of tissue structure in
white matter (here the uncertainties indicate standard er-
rors). The anisotropy of the diffusional kurtosis in white
matter is not clearly evident in the data of Table 1 due to
the averaging of data from several subjects.

Phantom Study

Figure 5 shows parametric maps for apparent diffusion
coefficient and diffusional kurtosis obtained for the phan-
tom in the slice direction. The signal intensity in the
surrounding water bath has been nulled for the sake of
clarity. The five sucrose bottles (a—e) have diffusion coef-
ficients similar to those measured by Laubach and co-
workers (14). Their mean diffusional kurtosis values are all
below 0.1, consistent with nearly Gaussian diffusion. The
asparagus bottle (f) has a diffusion coefficient intermediate
to that of bottles a and b, but the diffusional kurtosis is
0.39 * 0.06, reflecting a significant departure from Gauss-
ian diffusion.

Table 2 gives the mean diffusion coefficient and diffu-
sional kurtosis for bottles b (10% sucrose) and the aspar-
agus bottle in the phase, read, and slice directions. The
two bottles have a similar diffusion coefficient, but the
diffusional kurtosis is much higher in the asparagus bottle.
Both the diffusion coefficient and the diffusional kurtosis
varied little with direction, suggesting that the phantoms
were essentially isotropic.

DISCUSSION

In the conventional analysis of DWI data, the logarithm of
the signal intensity is fit to a linear function of b and an
estimate for the diffusion coefficient is extracted. The DKI
approach presented here differs essentially in that the
imaging data are fit to a quadratic function, which allows
for estimates of both the diffusion coefficient and the dif-
fusional kurtosis. In order to obtain the diffusional kurto-
sis with a reasonable degree of precision, b values some-
what larger than those usually employed in DWTI are nec-
essary so that the departure from linearity is clearly
apparent. In the brain, maximum b values of about
2000 s/mm? are sufficient.

An alternative method for obtaining the diffusional kur-
tosis is to use g-space imaging techniques to extract the
full diffusion displacement probability distribution (4,5).
However, this will typically require b values larger than



Diffusional Kurtosis Imaging

FIG. 8. Parametric maps of the
apparent diffusion coefficient
(first row) and the apparent diffu-
sional kurtosis (second row) for
one subject. The scale bar for the
diffusion coefficient is in units
wm?/ms. The average kurtosis
map shows markedly better gray
matter/white matter contrast than
the average diffusion map.

needed for our DKI approach. Perhaps more importantly,
we have shown that the diffusional kurtosis is the essential
information contained in the initial departure of the loga-
rithm of the signal intensity from linearity in b. After the
diffusion coefficient, the diffusional kurtosis is therefore
the diffusion property that is the most readily accessible
with MRL

Our data show that the apparent diffusional kurtosis in
frontal white matter is about 70% higher than in cortical
gray matter, reflecting white matter’s higher degree of
structure. Our gray matter average value of 0.82 = 0.03 is
similar to the average gray matter values of 0.66 * 0.28 and
0.78 = 0.12 reported by Jensen and Helpern (2), which
were derived from a retrospective analysis of two different
experiments. However, using g-space methods, a larger
value of 2.68 = 0.09 has been obtained by Litt et al. (4)
based on the study of five subjects, and a smaller value of
0.30 = 0.05 has been obtained by Chabert et al. (5) based
on the study of seven subjects. In white matter, our average
value of 1.41 * 0.11 is comparable to the values of 1.03 *
0.27 and 1.42 = 0.11 of Jensen and Helpern (2). In contrast,
Latt et al. (4) report a white matter value of 3.16 * 0.17,
while Chabert et al. (5) report white matter values ranging
from 0.26 to 1.16. These discrepancies in the measured
diffusional kurtosis may, in part, be due to differences in
experimental technique (e.g., diffusion time interval),
analysis method, region of interest selection, and subject
variability.

Our phantom results support the ability of diffusional
kurtosis maps to detect structural properties that are not
evident in diffusion coefficient maps. Our phantom, which
was essentially isotropic, demonstrates that a nonzero dif-
fusional kurtosis does not require diffusional anisotropy.
We hypothesize that the diffusional kurtosis observed in
the pureed asparagus is due to irregularly oriented diffu-
sion barriers. The nonzero diffusional kurtosis observed in
gray matter may have a similar origin.

A limitation of DKI is that the rigorous correspondence,
given by Eq. [6], between the true diffusional kurtosis and
the apparent diffusional kurtosis holds only in the limit of
infinitesimal gradient pulse durations. The same limita-
tion applies also to conventional DWI (1). However, if the
tissue can be modeled as consisting of multiple compart-
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Average

z"";

ments, inside of which the diffusion is Gaussian, then K, ,
= K independent of the value of the gradient pulse dura-
tion. The diffusional kurtosis can still be nonzero, as in-
dicated by Eq. [7], if the various compartments have dif-
ferent diffusion coefficients. This suggests that the appar-
ent diffusional kurtosis, which for practical reasons is
normally obtained with relatively long gradient pulses,

may still be a fair approximation to the true diffusional

kurtosis. Moreover, for Gaussian diffusion K, = 0 regard-
less of the gradient pulse duration, and so a nonzero K,

is a general indicator of non-Gaussian diffusion. Neverthe-
less, further investigation of the significance of this limi-
tation is warranted.

A principal advantage of the diffusional kurtosis com-
pared with the diffusion coefficient is that it is a specific

Average Kapp

Average Dapp (Lm2/ms)

FIG. 4. Scatter plot showing the correlation between the average
apparent diffusion coefficient and the average apparent diffusional
kurtosis for the maps of Fig. 3. The Spearman rank-order correlation
coefficient is —0.29, indicating that the two quantities are only
weakly correlated. This implies that the diffusional kurtosis gives
information beyond that provided by the diffusion coefficient.
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a b

measure of tissue structure (e.g., cellular compartments
and membranes). Although the diffusion coefficient is af-
fected by tissue structure, it is also influenced by other
factors, such as the concentration of macromolecules, and
is hence a less specific indicator of a tissue’s structural
complexity, as is apparent from our phantom results. This
may also be illustrated by comparing the average D,,, and
K,,, maps of Fig. 3. In the average D,,, map, there is little
contrast between white and gray matter, while a sharp
difference between white and gray matter is apparent in
the average K,,,, map. Similarly, the scatter plot of Fig. 4
shows that K,,, can vary considerably for regions with
similar diffusion coefficients.

The information given by the diffusional kurtosis is also
substantially different from that given by the fractional
anisotropy and related indices that are obtained with DTI
(8,12). In particular, the sensitivities of DKI and DTI differ
dramatically in largely isotropic tissues such as gray mat-
ter. This is because the fractional anisotropy reflects struc-
ture only if it is spatially oriented. Hence, alterations in the
structure of gray matter that may occur as a consequence of
pathology would not change the fractional anisotropy, but
could shift the diffusional kurtosis.

The primary purpose of this article is to establish the
theory and feasibility of DKI. Further work is needed to
evaluate its importance for clinical studies. However,
some preliminary speculations can be made on possible
applications of DKI. First, the large values of the diffu-
sional kurtosis in white matter suggest that DKI may be

Table 2

MRI Estimates for the Mean Diffusional Kurtosis and Diffusion
Coefficient Obtained from Bottles b (10% Sucrose Solution) and f
(Asparagus) of the Phantom

. ) Diffusional Diffu.si.on
Bottle Direction . coefficient
kurtosis 2
(m=/ms)
B Phase 0.02 = 0.02 1.66 = 0.02
B Read 0.04 = 0.03 1.66 = 0.03
B Slice 0.06 = 0.03 1.72 = 0.03
F Phase 0.32 = 0.07 1.72 = 0.05
F Read 0.34 = 0.09 1.75 £ 0.12
F Slice 0.39 = 0.06 1.81 £ 0.07

Note. Both bottles have a similar diffusion coefficient, but the dif-
fusional kurtosis in the asparagus bottle is much larger than that of
the sucrose bottle, reflecting the greater degree of structure. The
uncertainties indicate standard deviations.

Jensen et al.

FIG. 5. Parametric maps of the apparent diffusion
coefficient (left) and the apparent diffusional kurto-
sis (right) for the phantom in the slice direction. The
scale bar for the diffusion coefficient is in units of
wm?/ms. Bottles a through e contain sucrose so-
lutions with sucrose concentrations ranging from 5
to 25%. Bottle f contains pureed asparagus. The
average kurtosis map clearly reveals the higher
degree of structure in asparagus bottle, which is
not evident in the diffusion coefficient map.

useful for studying white matter diseases, such as multiple
sclerosis and epilepsy. Second, a retrospective analysis of
animal data indicates that the diffusional kurtosis in the
brain increases by nearly threefold following ischemia (2),
which implies that DKI is sensitive to structural changes
that occur in tissue following stroke. Interestingly, this
apparent increase in the degree structure following isch-
emia could be consistent with a decrease in membrane
permeability (15). Third, the diffusional kurtosis has been
shown to be small in newborns (2). The increase in the
diffusional kurtosis that presumably occurs through child-
hood could then be used to quantify tissue structure
changes in the developing brain. Finally, DKI may also be
applied to lung imaging with hyperpolarized *He, since a
nonmonoexponential dependence of the NMR signal on b
has been clearly observed in this case (16).

A natural generalization of DKI is diffusional kurtosis
tensor imaging (DKTI), in which the full diffusional kur-
tosis tensor is determined. Since this tensor has 15 inde-
pendent components, DKTI requires the use of at least 15
different directions for the diffusion sensitizing gradients.
From the diffusional kurtosis tensor, additional physical
quantities such as the angle-averaged diffusional kurtosis
and the diffusional kurtosis anisotropy can be deduced. A
detailed discussion of DKTI will be the subject of a future
publication.

CONCLUSION

DKI is a straightforward extension of DWI that provides a
sensitive measure of tissue structure by quantifying the
degree to which water diffusion is non-Gaussian. In the
brain, maximum b values of about 2000 s/mm? are needed,
which are about twice those usually used for DWI and are
now readily attainable on modern clinical MRI scanners.
The image postprocessing required to generate diffusional
kurtosis maps is only slightly more complex than that
needed to obtained diffusion coefficient maps. Thus, DKI
represents a modest change in the standard diffusion im-
aging methodology, while providing a significantly more
complete characterization of water diffusion and tissue
structure.

APPENDIX

Here we outline the derivations of some of the basic results
presented under Theory.



Diffusional Kurtosis Imaging

Consider the NMR signal produced in a region of inter-
est following an initial 90° spin flip pulse. Following the
formalism of Jensen and Chandra (17), the signal intensity
at a time T can be written

< exp [ — iyf dto()f(t) - r(t)]>

where the function f(t) specifies diffusion sensitizing gra-
dients and o(t) specifies the spin flip function. The angle
brackets indicate an average over all the diffusion paths
r(t) within the region of interest. This is a generalization of
the averaging defined by Eq. [1], and hence the same no-
tation is used. The spin flip function o(t) has a magnitude
of unity and changes sign at the times of any 180° refocus-
ing pulses, as discussed in detail by Jensen and Chandra
(17). The validity of Eq. [A1] requires that any variations in
the T, relaxation rate within the region of interest due to
mechanisms other than the applied diffusion sensitizing
gradients be negligible.

From Eq. [A1], the expansion of the logarithm of S in
powers of f is seen to be

5 = 5(0) , [A1]

In [SH)] = In [S(0)] = ¥*B, + ¥'B, + O(f), [A2]

where

B1:%E EJdet“ OV Of(E K Br(t))y - [A3]

i=1 j=1 0

B, = % E E E Ef dtf dt’J’ dt”f dt”o(Ho(t)a(t")

X a(t"AOfE ) Efi(E")

X [n(On ()t (t") — 3O I e)rn(t")] - [A4]
with f; and r; being the components of the vectors f and r,
respectively. In deriving Eq. [A2], we have used the con-
dition of no net flow (r(f)) = (r(0)) and the general refocus-

ing requirement (17)

f dta(t)f(t) = 0. [A5]

Now assume that

o(Of(t) = c[3(t — 1,) — 8(t — 1,)]m, [A6]
where n is the direction of the diffusion sensitizing gradi-
ents, c sets the gradient strength, and 3(t) is the Dirac delta
function. This is equivalent to assuming arbitrarily short
gradient pulse durations. Substituting Eq. [A6] into Egs.

[A3] and [A4] yields

[A7]
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=520 Km - 8)%) = 3((n - s)*)], [A8]
where s = r(t,) — r(t,).
From Egs. [2], [A7], and [A8], we find
— 1 2
B, = 4 B’K. [A9]

By identifying y*B, with bD,,,, Egs. [5], [A2], and [A9] are
seen to imply the result of Eq. [6]. Note that the validity of
Eq. [6] does not depend on how many 180° refocusing
pulses are used.

The result of Eq. [7] may be derived for isotropic diffu-
sion by assuming that the diffusion displacement proba-
bility distribution is

N

>, panDit) ' exp (—s -

i=1

P(s,f) = s/aDt) [A10]

and applying Egs. [1] and [2]. It is also straightforward to
demonstrate that Eq. [7] holds for anisotropic diffusion
provided that K, D, and var(D) are interpreted as the dif-
fusional kurtosis, average diffusion coefficient, and diffu-
sion variance for a particular direction.

The result of Eq. [9] can be obtained by expanding in
powers of b the analytic expression for S(b) for the two-
compartment exchange model (1,11) and then utilizing
Egs. [5] and [6]. The relationship 7,p, = 7, p, (indicated
under Theory) is the condition for equilibrium.

To obtain the result of Eq. [10], we first consider the
diffusion displacement probability distribution for a single
spherical pore of radius R. In this case, one may show that
the long time limit is given by

limP(s,t) = (45]?3) fdsre(B —|s +r))0(R — |r|)

1 3
%e<23 |s|>< 8—36%+3||> =g(s,R) [A11]

with 6(x) being the Heaviside step function. Equation [10]
is then derived from Egs. [1] and [2] with the diffusion
displacement probability distribution

P(s,t) = p.g(s.R,) + pyg(s,Ry), [A12]

which is appropriate for the long time limit of a region of
interest having a water fraction p, in pores of radii R, and
a water fraction p,, in pores of radii R,,.
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