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a  b  s  t  r  a  c  t

Magnetic  resonance  spectroscopy  (MRS)  is  a  non-invasive  imaging  modality  for  metabolite  detection  in
different parts  of  the  body  (e.g. brain,  liver,  prostate,  breast,  kidney,  skeletal  muscle,  and  heart)  for  normal
person as  well  as in  various  disorders.  It aids  in  providing  valuable  information  for  both  diagnosis  as  well  as
therapeutic  monitoring.  Though  there  has  been  tremendous  progress  in  MRS signal processing  techniques
for the  quantitation  of  neurometabolites,  variability  in the  absolute  quantitation  of metabolites  persists
due  to various  experimental  conditions.  In  this  article,  we  present  in-depth  discussion  on 1H  MRS  data
processing  and  quantitation  using  different  software  packages  both  in  frequency  (e.g.  LCModel)  and  time
domain  (e.g.  jMRUI).  We  have  included  comparative  analysis  of  precision  and  accuracy  of  MRS  data
ime domain
requency domain
CModel
MRUI

acromolecules
ipid

processing  using  LCModel  and  jMRUI  (AMARES).  Special  emphasis  has  been  provided  for  the  handling  of
macromolecules  and  lipid  in LCModel  and  jMRUI  methods.  The  author  also  suggests  certain  points  to  be
noted  while  opting  for above  software  packages.

© 2011 Elsevier Ireland Ltd. All rights reserved.
uantitation

. Introduction

Nuclear magnetic resonance (NMR) is an important biophys-
cal method for the in vitro determination of protein structure
nd protein–drug interaction studies [1–3]. Magnetic Resonance
maging (MRI), based on the principles of NMR, is a powerful non-
nvasive biomedical application tool (in vivo) to visualize different
egions of the body which provides greater image contrast between
ormal and abnormal tissues (e.g. tumor and cancer) for diagnostic
urposes. The spectrometer, popularly known as an “MRI scanner”,
enerates data and subsequently anatomical images are produced.
he same MRI  scanner is used for creating metabolite images for
ifferent parts of the body (e.g. brain, liver, prostate, breast, kidney,
keletal muscle, and heart) using magnetic resonance spectroscopy
MRS). The principal difference between these two  (MRI and MRS)
n vivo imaging modalities depends on the pulse sequences used for
ata generation. Magnetic resonance spectroscopic imaging (MRSI)

s the combination of both spectroscopic and imaging technique
o produce the distribution of metabolites within the tissue under

nvestigation.

The task and challenge in generating good quality MRS  data
rom various organs are different due to repeated gross or pulsatile

∗ Tel.: +91 9910318922.
E-mail address: pravat.mandal@gmail.com (Dr. Mandal)

720-048X/$ – see front matter ©  2011 Elsevier Ireland Ltd. All rights reserved.
oi:10.1016/j.ejrad.2011.03.076
motion leading to poor shimming and consequently increased
linewidths of the metabolite peaks [4].  It is also difficult to suppress
or separate the lipid peaks from metabolites of interest. Clinically,
brain has poor accessibility for biopsies compared to other body
organs [5] and imaging technique serves as important noninvasive
diagnostic method in clinical setup. MRS  studies on brain are advan-
tageous compared to other body organs due to: (i) easier to shim
the spherical shaped brain and least biologic motion of brain tis-
sue unlike other body organs (liver, kidney, and heart) and (ii) the
separation of lipid peaks from neurometabolites is well resolved in
the brain.

Broadly, the experimental parameters and conditions setting
for generating MRS  data involve good shimming (to overcome the
susceptibility effect), biological motion compensation, pulse angle
calibration, appropriate time setting involving echo time (TE) and
repetition time (TR) based on the relaxation times (e.g. longitudinal
(T1), transverse (T2) or T2*) of various tissues under investiga-
tion. Detailed discussion on this experimental aspect is out of the
purview of this manuscript.

The focus of this article is on 1H MRS  data processing and quan-
titation of brain neurometabolites. The outline of this manuscript
is as follows: (i) brief description of MRS  methodology as well

as the clinical application of MRS; (ii) preprocessing steps and
principles for quantitation of metabolites in time and frequency
domains; (iii) detailed description of preprocessing of MRS  data
and metabolite quantitation using LCModel, and jMRUI software

dx.doi.org/10.1016/j.ejrad.2011.03.076
http://www.sciencedirect.com/science/journal/0720048X
http://www.elsevier.com/locate/ejrad
mailto:pravat.mandal@gmail.com
dx.doi.org/10.1016/j.ejrad.2011.03.076
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Fig. 1. Schematic representation of voxel, field of view and volume of interest. In the
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ackages; (iv) comparative analysis of data quality processed
y LCModel, and jMRUI software packages and (v) handling of
he macromolecules and lipids using above mentioned software
ackages.

.1. Brief description of MRS  methodology

In vivo 1H MRS  and 31P MRS  are the most widely used appli-
ations in MRS  technique; however, MRS  studies are also possible
sing other nuclei (e.g. 13C, 19F, 15N, and 23Na). Signals from neu-
ometabolites consisting of different nuclei are represented either
s signal amplitude in the time domain, or peak-area in the fre-
uency domain, which is directly correlated to the concentration
f the assigned metabolite displayed along the Y-axis [6].  Gen-
rally, 1H and 31P MRS  techniques are used to detect different
etabolites such as N-acetylaspartate (NAA), a neuronal marker,
PC (glycerophosphocholine) and PC (phosphocholine), important
ell membrane components, Cr (creatine) and PCr (phosphocrea-
ine), involved in energy metabolism, and mI  (myo-inositol), a glial

arker that is elevated in cancer cells. The most frequently used 1H
RS  pulse sequences are PRESS (point-resolved spectroscopy) [9]

r STEAM (stimulated echo acquisition mode) [7].  Detailed math-
matical description of these two pulse sequences is presented
lsewhere [6].  MRS  data (1H, 31P or 13C) can be generated from
H MRS, proton decoupled 31P MRS  [8] and 13C MRS  [9] exper-
ments. It is important to note that 13C and or 31P nuclei have
ow gyromagnetic ratios compared to protons. Hence, to attain
etter sensitivity for 31P or 13C MRS  spectra, these experiments
re performed by utilizing the Nuclear Overhauser effect by tak-
ng advantage of the higher gyromagnetic ratio of the proton [10].

agnetic field strength (e.g. 1.5 T, 3 T, and 7 T) plays an impor-
ant role for the quality of MRS  data. 3 T scanner is now widely
vailable and permitted for routine clinical use; however, 7 T scan-
er now available exclusively for research purpose and not in a
linical setting yet. The spatial resolution of MR  spectra increases
ith magnetic field strength. At higher field MRI  scanner, signal to
oise ratio (SNR) of the metabolites increases approximately lin-
arly with field strength. Hence, good quality data can be collected
ith reduced number of scans in higher field scanner and MRS

xperimental time is saved, which is crucial in a clinical setting. It
s important to note that with increase in magnetic field strength,
elaxation times of metabolites are influenced (e.g. longitudinal
elaxation time, T1 lengthens with field strength and transverse
elaxation time, T2 decreases with field strength and magnetic sus-
eptibility effects increase with field strength). Hence, the proper
alibration of experimental parameters (e.g. echo time, repetition
ime and optimized flip angle setting) is required at high magnetic
eld strength scanner for MRS  studies [11–13].

.2. Brief description on the clinical application of 1H MRS

The analysis of different neurochemicals using 1H MRS  tech-
ique is extremely helpful for various brain disorders: Alzheimer
6,14,15], Parkinson [16,17],  bipolar disorder [18,19], schizophrenia
20,21], etc. The 1H MRS  studies are also important for clinical stud-
es outside of brain [5] involving breast tumor/cancer [22,23],  liver
isorder [24], prostate cancer [25] and skeletal muscle disorder
26,27].

.3. Common terminologies often used in MRS

.3.1. Field of view (FOV)

FOV represents the area of the brain or other parts of the body

nder investigation. FOV is generally expressed in specific dimen-
ions (e.g. 210 mm,  Anterior to Posterior, AP; 190 mm Right to Left,
L, slice thickness of 15 mm).  In the specified FOV, selection of spa-
figure, we  have 399 voxels in total, as FOV; however, only 30 voxels are in VOI. Tissue
from this region is actually excited by the selective pulse and signals are analyzed.
VOI is also sometimes referred to as Region of Interest (ROI).

tial resolution is accomplished with the help of phase encoding
gradients. Fig. 1 shows the graphical presentation of FOV.

1.3.2. Volume of interest (VOI)
VOI refers to the actual region under investigation. In the case

of single-voxel MRS, VOI is achieved with the involvement of three
slice selective pulses (either three successive 90◦ pulses, or one 90◦

and two  successive 180◦ pulses) applied in the presence of gradi-
ents. In the case of multi-voxel data collection, VOI with specific
dimension (e.g. 60 mm AP, 50 mm RL) is selected within the FOV
(Fig. 1). In case of smaller voxel size, longer experiment time is
required to achieve reasonable signal-to-noise ratio (SNR), and SNR
increases with voxel size increment due to higher tissue content as
shown in the equation below.

SNR = C(voxel size)

√
number of experiments performed

spectral bandwidth
(1)

where C is a constant. In case of single voxel experiments, VOI
and voxel size are same. Detailed information on multiple-voxel
methodology can be found elsewhere [28,29].

1.4. Single-voxel and multiple-voxel MRS

In the single voxel MRS  technique, a cubic or rectangular
volume element (referred to as single-voxel) is selected with
the help of slice selective pulses as well as gradients. The
size of the single-voxel is generally expressed in volume (e.g.
20 mm × 20 mm × 20 mm)  for a particular region of the brain. How-
ever, in multiple-voxel MRS, known as MRSI, experiments are
performed covering larger regions consisting of many voxels from
a single experiment. The collection of spectroscopic data from mul-
tiple adjacent voxels is accomplished by the introduction of phase
encoding gradients, which allow the measurement of spectra, for

one-dimension, in a slice for two-dimension, and in a volume
for three-dimension. Generally, Single Voxel Spectroscopy (SVS)
has advantages over MRSI in terms of more explicit spatial local-
ization, more homogeneous shimming, better water suppression,
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nd shorter acquisition time; however, only one spectrum can be
btained from the acquired SVS data [30]. On the other hand, in
RSI, metabolites are detected from multiple locations and this

esult is extremely helpful in establishing whether a particular
athological process is localized, bilateral, or diffuse [31]. However,

n MRSI, few challenges exist; field inhomogeneity across the tissue
nder investigation, spectral degradation due to spatial contami-
ation [32] and longer experiment time. MRSI data processing is
omplicated than SVS data analysis [12]. There are also other prob-
ems associated with MRSI experiments specifically at higher field
trength known as CSDE (chemical shift displacement error) [33]. In
SDE, proton MRSI signals with different chemical shifts experience
ifferent slice.

.5. MRS  data naming convention from different scanners

The output of any MRS  experiment contains raw data in time
omain and a header file containing all experimental parameters.
aw data from scanners is stored using different names. Hence,

t is important to standardize this data-naming pattern for clarity
Fig. 2). There is an urgent need for a universal MRS  data porta-
ility similar to the Digital Imaging and Communications (DICOM)
s available in MRI  imaging [34]. DICOM was developed by ACR-
EMA, the American College of Radiology and National Electrical
anufacturers Association for computed axial tomography and
RI  images.

. MRS  data analysis

The general schemes for MRS  data generation (either in time
omain or in k-space for MRSI data) and subsequent data analysis
re presented in Fig. 3. MRS  data analysis is divided into two stages;
reprocessing and quantitation. Preprocessing steps are performed
ither in the time or frequency domain as pictorially represented
n Fig. 3B. Quantitation of metabolites is also performed either in
ime or frequency domain.

For MRS  studies, various experimental conditions impart imper-
ections to the MRS  data. These conditions are: (1) receiver
mperfection for not collecting data from the exact start of the FID
r from the exact centre of the echo; (2) physiologic motion; (3)
ast decaying signals from immobile components; (4) overlapping
ignals from relatively mobile components; (5) truncation of data
efore FID has decayed to noise level; and (6) presence of residual
ater peaks. Hence, acquired MRS  data requires preprocessing to
inimize error in the quantitation of metabolites.
The preprocessing techniques are different depending on the

ature of MRS  data processing route (time or frequency domain).
ome preprocessing steps can be applied in both domains with
imilar outcome. There is a direct correspondence between the
epresentative parameters involving FIDs in time domain and
etabolite peaks of the spectrum in frequency domain. Hence,

uantification of MR  signal is performed from both the FID and
he spectrum equivalently. Details for preprocessing techniques in
ime and frequency domains are explained below.

.1. MRS  data analysis in time domain

Time domain MRS  data is referred as ‘measurement domain’
35–37] as it is a true representation of raw data. Briefly, the time
omain signal consists of a mixture of different damped sinu-
oid signals and these signals are unique and characterized by
ertain physical parameters (resonance frequency, damping fac-

or, individual phase and amplitude at t = 0). The amplitude of
he time-domain signal is directly proportional to the number of

olecules, the decay constant of the signal characterizes the mobil-
ty of the molecules and the frequency of the spectral components
diology 81 (2012) e653– e664 e655

characterizes the identity of the molecules [36]. Accurate and effi-
cient quantitation of MRS  signals is accomplished with the help
of appropriate model functions. Hence, selection of an appropriate
model function is an important step to estimate the intrinsic signal
parameters and convert the estimated parameters into biochemical
quantities (e.g. metabolite concentrations). Theoretically, the time
domain signal can be modeled by a sum of exponentially damped
complex sinusoids, where K is assumed to be a known number of
expected sinusoids of N time domain data samples as follows [36]:

S(tn)n=0,1,...,N−1 = a0 +
K∑

k=1

Akej��ke(−dk+j2�fk)tn (2)

where Ak (amplitude) is proportional to the number of nuclei con-
tributing to the spectral component with frequency fk and j =

√−1
and tn = t0 + n�t where �t  corresponds to sampling interval. The
damping factor dk provides information about the mobility and
macromolecular environment of the nucleus.

The term, 2�jfkt0 corresponds to the first-order phase and �k
represents the zero order phase factor. The noise term a0 is assumed
to be circular complex white Gaussian noise [36].

Analysis of time domain data comprises of preprocessing of
the MRS  data, followed by quantitation of the FIDs using prior
knowledge (relations between the spectral components involving
amplitudes, damping ratios, frequencies and phases) [38]. The next
two sections outline the preprocessing and quantitation methods
used in time-domain data analysis.

2.2. Preprocessing in time domain

As indicated earlier, the acquired MRS  data is not ideal due
to embedded imperfections originating from experimental condi-
tions. Hence, preprocessing of MRS  data is required to eliminate
certain imperfections. Steps involved in the preprocessing of MRS
data in the time domain are as follows:

2.2.1. Eddy current compensation (ECC)
Eddy currents occur due to magnetic field gradients generated

during MRS  data acquisition. Eddy currents induce time-varying
magnetic fields, which in turn cause either frequency-dependent
phase shifts, or dephasing (signal loss) of the observed time domain
signal. Hence, distortion in signal shape is observed leading to inac-
curate spectral quantitation.

The recovery from eddy current corrected signal is accom-
plished by dividing the water suppressed time domain MRS signal
point-wise by the phase part of the unsuppressed water signal
[39–42].

2.2.2. Offset correction
The DC (direct current) offset voltage occurs due to the leakage

of transmitter reference frequency into the receiver resulting in
non-zero mean of free induction decays. Hence, at zero frequency,
a spike is generated in the resulting spectrum [43]. The unwanted
spike is eliminated during preprocessing period.

2.2.3. Noise filtering
Noise is a time domain random function with certain stan-

dard deviation, which is embedded with the acquired signal. It is
assumed that in MRS  signal, the noise is Gaussian type with zero
mean and constant standard deviation. The SNR of MRS  signal is
correlated with the signal amplitude divided by the standard devi-

ation of the noise. Noise in MRS  signal is caused either due to the
thermal motion of the charged particles in the sample and/or the
thermal motion of the electrons in the coil and receptor paths
[44]. Hence, noise reduction is an important objective for SNR
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Fig. 2. MRS  data naming con

mprovement. Generally, matched filter is used for noise reduc-
ion and the function of such matched filter is similar to pattern
f signal decay. For clarity, the matched filter is an exponential
ecay function with the decay characteristic equal to T2* of the
ID. The selection of the matched filter is not straightforward for
ulti-compartment FID where compounds have different T2* val-

es [13,44]. Selection of other filter functions has impact on the
ine-shape.

.2.4. Zero filling
Digitized data points in the time domain can be extended with
 set of zeros. This implies that part of the signal, which may  not
ave been digitized within the acquisition window, have been fully
elaxed and have zero value. The effect of zero filling is to enhance
esolution leading to improved spectral visualization only. Data

ig. 3. (A) Diagrammatic representation of MRS  data generation and (B) data processing 

ake  of simplification, the output from the time domain data is shown as free induction d
ons from different scanners.

storage space increases depending on the extent of zero filling
applied. Zero-filling has a negligible effect for symmetric spin-echo
signals [45].

2.2.5. Residual water suppression
Various algorithmic approaches have been applied for the esti-

mation of water component. One strategy is to use low-pass
convolution, which suppresses all high frequency components of
the spectrum leaving only an estimate of the residual water [46].
Another strategy is to model the water component of the time
domain signal as a sum of multiple exponentially damped sinusoids

using the HSVD (Hankel Singular Value Decomposition) algorithm
[47]. The water signal ‘modeled’ using either of these techniques is
then subtracted from the observed MRS  spectrum, leaving only the
metabolite signals of interest [48]. The application of digital filter-

in MRS. SVS and MVS  refer to single voxel and multiple voxel spectroscopy. For the
ecay (FID) only.
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ng on the observed time-domain MRS  signal for the elimination of
ater signal is also available in the literature [49].

.3. Quantitation of metabolites in time domain

The concentration of the metabolites in a certain localized soft-
issue region is determined by computing the parameters of a
ertain ‘time domain model’ function as shown in Eq. (2).  In time
omain, there are two approaches for the quantitation of metabo-

ites: iterative methods and non-iterative methods [37]. In the
terative methods, typical NLLS (non-linear least squares) meth-
ds are used to minimize the difference between the data and
he model function using local or global optimization. Another
mportant feature of the iterative methods is the inclusion of prior
nowledge (e.g. frequencies, damping factors and phases of some
xponentials). One of the early methods of imposing prior knowl-
dge onto the observed signal is the VARPRO (variable projection)
ethod [50]. VARPRO method assumes a Lorentzian line-shape for

he individual components of the resonances and fits correspond-
ng decaying exponentials in the time domain, utilizing Osborne’s
evenberg–Marquardt local optimization algorithm [51,52]. This
terative methodology in time domain data fitting was further
mproved by AMARES (Advanced Method for Accurate, Robust and
fficient Spectral)[53,54]. AMARES fitting enables the incorpora-
ion of more prior knowledge on the spectral parameters to increase
fficiency, convergence rates, overall accuracy, and can also be
xtended to fit echo signals. AMARES is pre-programmed to switch
etween Lorentzian, Gaussian or Voigt model line-shape and can be
sed for fitting spin echoes in addition to FIDs [55]. There are other

terative quantitation methods, such as AQSES (Accurate Quantita-
ion of Short Echo time domain Signals) [56] or QUEST (quantitation
ased on QUantum ESTimation) which makes use of a metabolite
asis set generated from the simulated spectra [57].

Non-iterative methods are either based on the LP (linear predic-
ion) principle or based on the state-space theory like HSVD [58].
on-iterative methods are less flexible than the iterative methods

or the inclusion of prior knowledge, and hence these methods are
ess suitable for more complicated analysis such as short-echo time

RS  signals [37]. In non-iterative methods, model function is con-
ned to only exponential decay and model parameters are chosen

n one single step.
Some of the non-iterative methods in time domain include

SVD, HLSVD (Hankel Lanczos Singular Value Decomposition),
TLS (Hankel Total Least Square) and LPSVD (Linear Prediction
ingular Value Decomposition).

Finally, model fitting yields the contribution of each input sig-
al. Usually, Cramer–Rao lower bounds (CRLB) provide an estimate

or the fitting error or the statistical uncertainty of the metabolic
oncentration estimate [59].

.4. MRS  data analysis in frequency domain

In frequency domain, processed (Fourier transformed) FID is
epresented by signals in absorption mode and characterized by
heir specific resonance frequency, line shape, line width, phase
60]. In an ideal case, free induction decay is considered as a
um of exponentially decaying sinusoid functions. The available
odel functions for FID in frequency domain consists of Lorentzian

exp(−˛t)), Gaussian (exp(−ˇt2)) and Voigt (exp(−˛t − ˇt2)) line
hapes. Mathematically, Fourier transformation is a linear trans-
ormation method which decomposes a signal into its constituent
requencies. The information content in the time domain signal

(t) and the frequency domain signal S(f) is the same, provided the
cquired signal is “ideal”. However, the time domain signals from
n vivo studies are not “ideal” due to experimental conditions as
ndicated earlier.
diology 81 (2012) e653– e664 e657

The various preprocessing steps in frequency domain are as fol-
lows.

2.4.1. Preprocessing in frequency domain
Certain preprocessing steps (e.g. eddy current compensation,

offset correction, apodization) are common to both frequency
and time domain, and will not be elaborated in this section. In
the frequency-domain, three additional steps namely, phase cor-
rection, residual water suppression and baseline correction are
applied. Brief description of these preprocessing steps is given
below.

2.4.1.1. Phase correction. Certain distortion of the metabolic res-
onance peak shape can be addressed by phase correction. Phase
correction consists of two  steps: zero order phase correction and
first order phase correction and may  be implemented manu-
ally or automatically [61]. First, zero order phase correction is
implemented, followed by the first-order phase correction. In zero-
order phase correction, the same degree of phase correction is
implemented for all resonance peaks, while in first-order phase
correction, the amount of phase correction effect is dependent on
the individual peak [61] under consideration.

2.4.1.2. Baseline correction. This is an important step as inaccurate
baseline correction is one of the major sources of variability in
quantitation of metabolites. Due to the presence of residual water
and/or strong signals arising from lipids, phase corrected spectra
are distorted [61]. Baseline can be corrected manually but most
of the programs can do it automatically (e.g. LCModel uses spline
functions for the baseline).

2.4.1.3. Residual water suppression. Generally, the resonance fre-
quency of water is different compared to other metabolites. Hence
filters can be used to remove those specific frequency ranges [62].
One approach is to shift water spectrum to zero frequency using a
low pass filter and subsequently subtract it from the original signal.
Another approach is to remove the water signal by applying high
pass filtering to the FID. In the above two approaches, improper fil-
tering may  influence the actual signals of the metabolites which in
turn influence the accuracy of quantitation. Special filtering proce-
dures in combination with some other signal treatments have also
been proposed [49]. These filters have the ability to remove com-
pletely the water spectral line, including its frequency domain tails
while minimally affecting those signals which are resonating in the
frequency range of the tails.

3. Quantitation of metabolites in frequency domain

Quantitation of metabolites in the frequency domain is accom-
plished either by peak area integration or by nonlinear least square
fitting using model functions. Peak area integration methods works
well when peaks in the spectra are well resolved. However, in
in vivo studies, due to the complexity of the spectra and the over-
lap of many peaks, quantitation of the spectrum is accomplished
by model-based optimization algorithms. These optimization algo-
rithms are based on the regularized nonlinear least squares method
[63]. Ideally, the MRS  spectrum is a pure “Lorentzian line”. But, in
reality, MRS  signals consist of a mixture of Lorentzian and Gaussian
curves or some other distorted shapes. The general equation can be
written as [64]

N∑ N∑ N∑
N
S(f ) =

N=1

A1LN(�N,f ) +
N=1

A2GN(�N,f ) +
N=1

BNf + W(f  ) (3)

where A1 and A2 are the weighted factors for Lorentzian (LN) and
Gaussian contribution (GN), respectively, and W(f) is a white Gaus-
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ian noise [64]. The values of A1 and A2 can either be estimated or
xed as prior information. In addition, the third term accounts for
ossible baseline distortions. A polynomial of order N with coef-
cient BN can be used to model the baseline. The estimation of
odel parameters �N is obtained by solving a classical non-linear

east-square problem.
Several fitting algorithms operating in the frequency domain

ave been developed in recent years, which allow inclusion of prior
nowledge (e.g. amplitude, damping ratios, frequency and phase
hifts) as well as relation between spectral components [64,65].
rior knowledge plays an important role in resolving overlap-
ing peaks or in imposing common line-widths in noisy spectra
o improve accuracy of other estimates [64].

. Fundamental differences in time and frequency domain
nalysis

There are many differences between time and frequency-
omain data analysis. In the time domain method, concentration
f a metabolite component is proportional to the amplitude of the
ignal, whereas in the frequency domain, concentration of metabo-
ites is proportional to the area under the metabolite peak. In time
omain method, MRS  data is analyzed within the ‘measurement
omain’ [35]. If the measured signal is ideally identified by high
NR, with no truncation and no baseline distortion, then both time
nd frequency domain methods give the same results within the
rror limits [66]. Any imperfections in the measured signal, due to
xperimental conditions (as mentioned earlier) may  create a differ-
nce in metabolite concentration between the frequency and the
ime-domain data.

In time-domain data processing, a particular range of good data
oints can be used for analysis, whereas in the frequency domain,
ourier transformation is performed for all data set and separat-
ng the good data points is not possible in frequency domain. In
he frequency domain, distortion of the spectrum may  arise due
o the receiver induced effect at the initial data point as well as
ue to truncation of the FID [66]. This creates a rolling baseline.

mmobile components due to short transverse relaxation time (T2)
enerate spectra with broad line widths. These broad lines create

 “macromolecular baseline” or a baseline originating from short
2 components, which makes the baseline approximation more
emanding [61].

The time-domain computations can be more memory and time
onsuming compared to frequency-domain [67]. In general, time-
omain methods do not rely on equally spaced sampling intervals,
hich may  be attractive for the multidimensional MRSI techniques

67].

. MRSI data visualization

There are several methods available for the visualization of pro-
essed MRSI data from localized spectra as well as its correlation of
patial distribution of metabolites in various anatomical regions
68–70]. Briefly, a grid is superimposed on the MRI  image and
orresponding arrays of spectra are plotted, then the spatial distri-
ution of metabolites is overlaid of the corresponding MRI  images.
n practice, three dimensional MRI  (3D volume) and MRSI data are
ollected from the same subject and data can be viewed at any
lane.

.1. Precision of metabolite quantitation from SVS and MRSI data
In MRSI, the optimization of magnetic field homogeneity over
arge volumes of tissue is challenging, in contrary, fairly good shim-

ing can be achieved in SVS. There are variations in data quality of
diology 81 (2012) e653– e664

different voxels arising from B0 variations spanning the entire VOI,
which causes relative frequency shifts between voxels. This fre-
quency shift correction is required prior to peak fitting of MRSI data.

The variations of B0 in MRSI data have two major effects: (i) it
broadens the signal and sometimes closely space peaks are difficult
to resolve and in worst case, peaks are broadened completely and
(ii) water peak is over suppressed in some voxels and under sup-
pressed in other voxels pertaining to differences in fitting of the
baseline. MRSI data fitting is more complicated compared to SVS
and needs much careful attention [71]. The precision of metabolites
concentration is more profound in SVS compared to MRSI.

It is important that MRS  data (SVS and MRSI) fitting programs
provide the Cramer–Rao minimum variance bounds (CRMVBs),
which reflect the theoretical standard of precision for the model
parameter estimates obtained from the data [72]. The system-
atic errors (e.g. incorrect prior knowledge) are not included in the
parameter estimation. Furthermore, SNR degradation and increase
in linewidth, which may lead to systematic errors, are not neces-
sarily reflected in CRMVB estimates [72].

6. Combined approach of frequency domain fitting using
time domain models and prior knowledge

Quantification of metabolites is performed mainly by time
domain (TD) methods and frequency domain (FD) methods. In TD
methods, MRS  data is analyze within the ‘measurement domain’
and has the added advantage for easily handling missing data
points and or removing data points at the entry arising from macro-
molecules. FD methods are suited for frequency selective analysis of
time domain MRS  data and this can decrease the number of model
parameters. Combination of TD and FD methods called TDFD fit-
ting approach has been proposed [73,74]. TDFD approach uses TD
models whose parameters are determined by fitting a selected part
of the discrete Fourier transform of the TD model involved in that
MRS  data fitting. Thus TDFD methods can easily handle complex
models or the case of missing data as well as frequency selective
analysis [35].

7. MRS  data processing and quantitation of metabolites
using different software packages

Generally, each scanner provides basic MRS  data processing
software package for quick overview but in most cases, researchers
process and analyze MRS  data using other software (in-house,
freeware or commercial) for more flexibility and in-depth analy-
sis. There is a long list of available MRS  data processing software
[53,56,75–82]. However, data processing and quantitation using
two software packages (LCModel and jMRUI) are mentioned in
detail.

8. LCModel

The LCModel is an automatic (non-iterative) commercial soft-
ware for 1H MRS  data analysis in frequency domain [63] with
minimum user input [63]. It is written in C programming lan-
guage and works in UNIX environment. LCModel is supported
by a user-friendly graphical interface, LCMGui. LCMGui automati-
cally calculates the metabolite concentrations and the uncertainties
using CR lower bounds formalism [83].

The LCModel [84] analyzes an in vivo proton MR  spectrum from
brain tissue as a linear combination (LC) of ‘model’ in vitro spec-

tra from individual metabolite solutions. These model spectra are
supplied along with the software package, or can be generated
from in vitro model metabolite spectra, which satisfy compatibility
requirements with acquisition parameters of the laboratory in vivo
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ata. The LCModel produces the ‘best fit’ for the analysis of the
verlapping peaks [84].

LCModel incorporate maximum “prior information” (e.g. peak
osition, peak intensity and phase information in the case of mul-
iplets) into the analysis. These prior information do not depends
n individual peaks or of related peaks but on the near-complete
pectral pattern of each metabolite at a particular magnetic field
1.5 T, 3.0 T, etc.) and type of scanner (Philips, GE, Siemens, etc.).
rior knowledge in frequency domain refers to some of the spectral
eatures, which are consistent with the subjects under study. This
rior information is incorporated in a basis set consisting of a sep-
rate spectrum for each of the metabolites (e.g. N-acetylaspartate
NAA), creatine, choline, lactate, alanine, myo-inositol, glutamate,
cyllo-inositol, glutamine, N-acetyl aspartyl-glutamate (NAAG),
spartate, glucose, GABA and taurine). Inclusion of prior knowl-
dge reduces the number of unknown parameters to be fitted by
he LS minimization method and hence, computation time and
tting error are reduced, and the quality of spectral fitting is

ncreased.
The measured brain MR  spectrum is compared with a linear

ombination of spectra from this basis set. The coefficient for each
asis function (spectral component) is computed to obtain the best
t to the observed in vivo proton MR  spectrum. These linear com-
ination coefficients give the maximum-likelihood estimate of the
oncentration of each metabolite.

The LCModel also optimizes the line-shape of all peaks, their line
idths, the frequency shifts, the phase, and the baseline, simultane-

usly with the linear spectral coefficients. Estimates of uncertainty
rising from noise are also presented, using the CR minimum vari-
nce bound. The CR bounds represent a lower limit on the statistical
rrors of the fitted parameters, which are determined by the signal
o noise ratio of the spectrum and the mutual interdependence of
he model parameters [67].

The major computation time required in the LCModel is to get
tarting values for the phases for the preliminary analysis and refer-
ncing shift for the final analysis. Computation time can be reduced
n LCModel analysis if prior information on the approximate phase
orrections is included in the “CONTROL file”.

The one page output generated using the LCModel program for
uman data is shown in Fig. 4. The output from the LCModel is avail-
ble either as a graphic display in a postscript file, or as numerical
nformation in a self-documented text (.table file), or .csv spread-
heet file. The postscript file and the text file contain fitted data
nd quantitation information of different metabolites, as well as
ome experimental parameters used in the experiments. The plot
n the postscript file contains three thin curves, the middle one is
he original data, the one below is the baseline, and the one above
s the residual (Fig. 4). The thick curve in red is the LCModel cor-
esponding to the input data. The ppm-range plot of analyzed data
s designated as “analysis window”. The concentration table in the
ostscript and the text file provide information about the metabo-

ite concentration ratios. The actual concentrations expressed in
illimoles per liter (mmol/L) and the estimated standard devia-

ions are expressed in percent of estimated concentrations. The
ostscript file indicates the metabolites with acceptable reliability

n blue color and the metabolites whose concentrations are signif-
cantly lower or higher than normal in red color. In terms of error
alculation, the % SD (standard deviation) of estimated concentra-
ions gives the CR lower bound on the estimated concentrations
nd represent the 95% confidence interval of the estimated con-
entration values. A percentage standard deviation >50% indicates
hat the metabolite concentration could range from zero to twice

f the estimated concentration. Hence, metabolite concentrations
stimated with %SD greater than 50% are considered to be unreli-
ble and the associated metabolites are assumed to be undetectable
85].
diology 81 (2012) e653– e664 e659

The major advantage of the LCModel [84] is that model imper-
fections due to acquisition effects are included in the acquired basis
function and maximum amount of available prior knowledge is
used. The disadvantage is that 31P MRS  spectral analysis cannot
be performed using the LCModel program due to lack of basis set.

Other software packages for MRS  data analysis in fre-
quency domain are also available (e.g. MestRe-C/MestRe-Nova
(Mestrelab Research) (http://mestrelab.com/), CSX/IMAX Software
from Kennedy Krieger Institute, and Johns Hopkins Medicine).
Detailed information on CSX/IMAX software is available at
http://godzilla.kennedykrieger.org/csx/CSX IMAX Jan 2001.pdf.

8.1. Absolute quantitation of metabolites using LCModel

In LCModel, the concentration of the metabolites is calculated
using the formula

Conmet = (Ratioarea) × 2
N1Hmet

× ATTH2O

attmet
× WCONC (4)

where Ratioarea refers ratio of the resonance area of metabolite and
the resonance area of unsuppressed water. N1Hmet indicate the
number of equivalent protons contributing to the resonance (e.g.
N1Hmet = 2 for CH2 groups). WCONC is the water concentration (in
mmol/L) in the voxel, which is 35,880 mmol/L. ATTH2O and attmet

are the attenuation factors (generally <1) by which the water and
metabolite resonance areas are attenuated by relaxation. Default
ATTH2O value is 0.7.

LCModel performs optimally at short echo and long repetition
times. The relaxation time (T2) corrections to absolute concen-
trations are only differential, since the T2 relaxation corrections
involve the difference between 1/T2 in vivo and in vitro, but they
can still be significant with long TE [63]. The basis set spectra are
collected with fully relaxed condition (TR = 10,000 ms)  and similar
condition in in vivo is not feasible due to time constraint. Hence,
generally it is assumed that metabolites (in vivo) are assumed to be
relaxed back with the set repetition time (generally TR 4000 ms) in
a clinical setting.

In LCModel, it is also possible to introduce T1 relaxation
time corrections for each metabolite using the correction factor
fTR = (1 − exp[−TR/T1vitro])/(1 − exp[−TR/T1vivo]). Here ‘vitro’ refers
to the relaxation values of the metabolites in the solution [85].

9. jMRUI

jMRUI software uses java-based graphical user interface (GUI)
to analyze the time-domain MRS  data (FID or echoes) [86] and runs
on PCs with Windows, Linux and Unix platforms. Graphical user
interface (GUI) in jMRUI is managed by java development kit (JDK),
while native code is written in FORTRAN and ANSI C is used for
the interface between the GUI and the native code. In comparison
to LCModel software, jMRUI requires user interaction [59].jMRUI
allows time-domain MRS  (1H and 31P) single voxel as well as in mul-
tiple voxel data and can handle large data sets such as time resolved
MRS, and MRSI data [59]. Theoretically, signals from metabolites
can be computed by quantum mechanics using NMR  scope based
on the product-operator formalism.

MRS  data processing using jMRUI is subdivided into two  stages:
preprocessing and. quantitation. There are number of preprocess-
ing steps in the time domain. HLSVD filter and HLSVDPro-filter [87]
are used for the suppression of water molecules. The time-domain
QUALITY deconvolution method helps to remove magnetic field
inhomogeneity, contribution to the line-shape yielding Lorenzian

line shapes [88]. The Cadzow function is used to filter the sig-
nal [54]. jMRUI also uses gabor as a tool for peak extraction and
dynamic phase correction. Mathematical operators, like addition,
subtraction, multiplication of the signal with a scalar quantity, are

http://mestrelab.com/
http://godzilla.kennedykrieger.org/csx/CSX_IMAX_Jan_2001.pdf
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ig. 4. Single voxel MRS  data was processed by LCModel program. The neurometa
BRC  using 3T MRI scanner.

vailable for the normalization of a signal or over a series of sig-
als. It also provides the preprocessing operator to convert an echo
ignal into an FID signal. All the above operations are performed in
ime domain except the ER filter and the baseline correction, which
re done in frequency domain.

jMRUI software provides for a number of quantitation methods
roadly classified as black box methods like Hankel Singular Value
ecomposition (HSVD)/Hankel Lanczos Singular Value Decompo-

ition (HLSVD), Hankel Total Least Squeres (HTLS)/Hankel Lanczos
otal Least Squares (HLTLS), Linear Predictive Singular Value
ecomposition (LPSVD) or interactive methods like VARPRO,
MARES, QUEST and AQSES.

The black box methods are based on either LP (linear predic-
ion) principle or state space formalism. LPSVD method is based on
P principle and uses SVD decomposition to estimate the prediction
oefficients in the forward linear prediction procedure expressed as

 matrix in a least squares sense. The HSVD/HLSVD and HTLS/HLTLS
ethods are state space based, where the data is arranged in a Han-

el matrix. HSVD computes the Eigen values of the Hankel matrix
hich are estimates of the signal poles. The HLSVD algorithm is a

omputationally efficient version of HSVD, which computes only
art of the SVD using the Lanczos bidiagonalization algorithm. A
ariant to the HSVD algorithm is the HTLS algorithm that computes
he Total Least Squares (TLS) solution leading to more accurate

arameter estimates. HLTLS, like the HLSVD, is a computationally
fficient version of HTLS using Lanczos algorithm.

In the interactive quantitation methods the line-widths and con-
entrations are part of a nonlinear model and are optimized by
s are assessed and quantifications results are shown separately. Data collected at

fitting the in vivo signal with a combination of metabolite signals by
nonlinear least squares techniques. The interactive quantification
methods in jMRUI are described below.

(1) VARPRO method minimizes the variable projection functional
in which the linear and nonlinear parts of the model function
are separated. Here the fitting process is separated into one
non-linear least squares algorithm in which only the frequen-
cies and the damping factors are optimized, and another linear
least squares algorithm in which the amplitudes and phases are
fitted. In VARPRO, minimization of the functional is achieved
by applying a modified version of the Levenberg–Marquardt
algorithm. The advantage of separating fitting process is that
no starting values are needed for the linear parameters, and
that the number of parameters is halved. VARPRO’s capacity to
include prior knowledge has made it a reliable tool for accurate
and consistent spectral analysis even in challenging data sets
with low quality.

(2) AMARES method performs fitting of Lorentzian, Gaussian or
Voigt peaks to the signal, with the possibility of including
prior knowledge about relations between peaks, such as equal
line-widths, or fixed frequency shifts. It minimizes a general
functional consisting of the sum of squared differences between
the data and the model function. The available biochemical

prior knowledge can be expressed as a set of linear relations
between parameters resulting in a minimization problem with
linear equality constraints. AMARES uses a singlet approach for
imposition of prior knowledge. Each of the parameters can be
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left unconstrained or kept fixed. In AMARES, a fixed shift or
ratio, or a variable shift or ratio, with respect to any uncon-
strained or fixed parameter of the same type can be imposed.
These variable shifts or ratios can then be linked between dif-
ferent groups of peaks. These constraints are substituted in
the original functional in order to obtain an unconstrained
NLLS optimization problem. AMARES uses a modified version of
NL2SOL, a sophisticated NLLS algorithm to minimize the gen-
eral functional. This algorithm allows the user to specify the
upper and lower bounds on the variables. This can be used to
impose positive dampings, amplitudes, and upper and lower
bounds on frequencies and phases based on the spectral width.
AMARES also offers the ability to fit echo signals, an echo being
modeled as two FIDs back to back. The left and right parts of the
echo are considered to have the same amplitudes, frequencies
and phases, but different damping. The damping of the right
and left parts can be linked to each other.

3) QUEST, the most recent method, uses a basis set of metabolite
signals that are combined to fit the in vivo signal. In this linear
combination model, the amplitude/concentration, line-width,
phase and frequency shift of each metabolite are considered as
free parameters and a nonlinear least square function is min-
imized with the Levenberg–Marquardt method for nonlinear
optimization. All these computations are performed on both
the real and imaginary parts of the FID, in the time domain,
and not on the frequency domain, as opposed to the LCModel.
QUEST can also accommodate a baseline (or background) com-
ing from macromolecules, by truncating a number of points
at the FID, fitting the truncated signal with the metabolite
basis set, back-extrapolating the estimated model, subtracting
it from the in vivo signal, and smoothening the result to yield
an approximation for the baseline. The metabolite basis set .ml
and the peaks file .peak can be generated using NMR  scope and
used as prior knowledge input for QUEST quantitation method.
MRS  data processed using AMARES in jMRUI is presented in
ig. 5. On the top left (Fig. 5) is the information related to the file
rocessed including the number of components asked for and the

ig. 5. Multiple voxel MRS  data processed by jMRUI program. We  have used jMRUI (AMA
T  MRI  scanner.
diology 81 (2012) e653– e664 e661

number of components found. The table gives information about
the estimated components: their frequencies, dampings, ampli-
tudes and phases, respectively. CR lower bounds can be used as
a measure of the accuracy of the calculation of the amplitude of a
certain component.

9.1. Absolute quantitation using jMRUI

The absolute concentration of metabolites from signal inten-
sity as derived by jMRUI can be fitted to a simplified equation as
reported [67,89].

CM = SM

SW
× CW × nW

nM
× f T1

W

f T1
M

× f T2
W

f T2
M

(5)

where indexes M for metabolite and W for water, C stands for
concentration, S for signal intensity, n for the number of chem-
ically equivalent protons, fT1 for spin-lattice relaxation function
(1 − eTR/T1 ), fT2 for spin-spin relaxation function (e−TR/T2 ). CW stands
for concentration of water in white matter, which is 35,880 mmol/L
same as applied in LCModel.

Mono exponential spin-lattice and spin-spin relaxation are
assumed be T1 (for water: 832 ms;  Cho: 1080 ms;  Cr: 1240 ms; NAA:
1350 ms)  and T2 (water: 110 ms;  Cho: 187 ms; Cr: 156 ms;  NAA:
295 ms). The relaxation times of water and respective metabolites
measured at 3 T for healthy volunteers were used for relaxation
correction [89].

10. Comparative analysis of precision and accuracy of MRS
data in LCModel and jMRUI

Comparative analysis of time domain and frequency domain
data analysis in prostate [90] and in skeletal muscle [27] are nicely
documented. Similar comparative analysis on short echo time brain
MRS  data is reported [91,92].
In another study, the average metabolite concentrations deter-
mined using jMRUI and LCModel from two  anatomical regions of
Schizophrenic Patients, and the mean CV (coefficient of variance)
between scans one week apart are analyzed [92]. MRS  data from

RES) package for the quantitation of the metabolites. Data collected at NBRC using
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oxels using PRESS sequence (TE = 40 ms,  TR = 2000 ms)  were pre-
ented for comparative analysis.

There was no significant difference in means between the two
cans for any of the metabolites measured (all P-values <0.1) [92].
eproducibility, as measured using the mean CV between scans,

or the frontal voxel (within patient) was excellent (e.g. NAA from
CModel: 2%; MRUI: 4%, Cho from LCModel: 2%; MRUI: 2%, creatine
rom LCModel: 3%; MRUI: 4% and mI  from LCModel: 13%; MRUI:
%) [92].

Another comparative analysis using LCModel and jMRUI
AMARES) of 1H MRS  data (short echo time) for the quantification
f metabolites on human brain was reported [91]. It was reported
hat the inclusion of macromolecules and lipids basis set in LCModel
mproves the accuracy of the results compared to the spline fit of
he baseline. Similar observation with jMRUI is that the inclusion
f macromolecules and lipids in the prior knowledge improves the
recision and accuracy of the metabolites (NAA, Cho, creatine and
I)  quantitation significantly.
The concentration of the metabolites (NAA, Cho, creatine and

I)  shows slight overestimation in LCModel, whereas, jMRUI gen-
rates slightly underestimated concentrations of those metabolites.
lx concentration was definitely more precise and accurately
etermined by LCModel than jMRUI in this study. In both meth-
ds, the metabolite-to-creatine ratios show that the metabolites,
AA, Cho and mI  have same general trend [91]. LCModel analysis
as superior to jMRUI (AMARES) for determining Glx/Cr ratios in

hat study [91].
In the same study, for the absolute quantitation of macro-

olecules (abbreviated as mm1,  mm2,  mm3,  mm4,  mm5,  mm6
nd mm7), both LCModel and jMRUI exhibit poor accuracy and
ery low precision, except for mm1  and mm2  using jMRUI, and
m2 using LCModel fitting. The same study, also reports 10–20%

nderestimation of the lipid concentrations using LCModel analy-
is, but high SD (standard deviation) discourages the acceptance of
he value for any practical relevance. On contrary, jMRUI (AMARES)
nalysis exhibits poor accuracy and very low precision for lipid
oncentration determination [91].

1. Selection of appropriate prior knowledge involving
acromolecules and lipid resonances

Due to inherent immobility, peaks originating from macro-
olecules (e.g. cytosolic proteins) and lipids are broad (charac-

erized by short T2). These broad peaks distort the baseline and
ubsequently cause a major source of variability in fitting MRS  data
bsolute quantification. It is important that macromolecular con-
ent in the in vivo spectra cannot be analyzed using simple model
unction as various types of macromolecules essentially contribute
o this “gross” spectrum [93].

In the frequency domain (i.e. LCModel), the estimation of macro-
olecule using mathematical approaches is done by sum of splines.

n the time domain (jMRUI), it is accomplished by weighting the
rst 20 points in AMARES and by Subtract approach in QUEST.
he Subtract-QUEST method (jMRUI) is based on a semi-parametric
pproach. It untangles the background from the metabolite signal,
odels it separately and fits the untangled metabolite signal using

 parametric nonlinear least-squares approach sequentially.
An advantage of the mathematical approaches is the time saving,

ecause we do not need to acquire the spectrum of macromolecules
eparately.

However, more prior knowledge (which cannot be obtained by

athematical estimation) on the macromolecule signal is needed

o obtain an accurate estimation of the metabolite concentrations
t higher magnetic field, where the macromolecule spectrum is
etter resolved. This prior knowledge we are usually obtaining by
diology 81 (2012) e653– e664

measuring the macromolecule signal in vivo by inversion recovery.
The quantification of macromolecules and lipids is an area of active
research [94–96].

In LCModel, the addition of macromolecular and lipid basis
set improves significantly precision and accuracy of the neu-
rometabolites [91]. Similarly, in case of jMRUI (AMARES), inclusion
of background in the prior knowledge adds much improvement in
the precision and accuracy of the neurometabolites.

12. Criteria for choosing MRS  software package for data
processing

Although two MRS  data processing software packages are
discussed in this manuscript, there are many other MRS  data
processing software packages used in different laboratories. The
consideration for MRS  data software should be based on few fac-
tors. These factors include software capabilities (i.e. SVS or MRS
data analysis); automation; flexibility for changing analysis for
new pulse sequences, performance, cross-platform compatibility,
and user friendliness, as well as in-depth documentation, nuclei of
interest (1H MRS  or 31P MRS) and availability (free for academic
use or commercial). The author has refrained from selecting a par-
ticular software package, but certainly, the criteria for choosing
appropriate software as mentioned above will help the user.

13. Conclusions

Preprocessing of in vivo MRS  data is crucial for the enhance-
ment of the measured signal which has a great significance in
clinical studies. We  have presented the details of MRS  data process-
ing both in time and frequency domains in a sequential manner.
Two MRS  data processing software packages are discussed with
inherent mathematical approach. A comparative analysis of signal
processing in time and frequency domain is performed. Data qual-
ity using LCModel and jMRUI is presented specifically focusing on
precision and accuracy. MRS  data (Figs. 4 and 5) was collected with
the approval of the institutional human ethics committee using 3 T
MRI  scanner at NBRC.
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