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ABSTRACT: The aims of this article are to review the properties of noise in magnitude

MR images to clarify the terminology used when referring to the noise and to discourage

the use of the terms Rician noise and Rician noise bias. The distribution of measured MR

pixel intensities in the presence of noise is known to be Rician, and the width of this dis-

tribution is directly related to the Gaussian noise on the measured real and imaginary

signals. It is the pixel magnitude values that follow the Rician distribution, not the noise.

The term Rician noise should be used cautiously or, better still, avoided completely since

inherent to this terminology is behavior that is not normally associated with noise, such

as dependence on signal strength. This terminology is misleading and can lead to con-

ceptual and practical misunderstandings. It is better to relate the image noise to the

Gaussian noise on the real and imaginary signals. � 2008 Wiley Periodicals, Inc. Concepts

Magn Reson Part A 32A: 409–416, 2008.
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INTRODUCTION

It has been noted by the authors that the terms Rician
noise and Rician noise bias are appearing more fre-

quently in the MRI literature. Last year alone, at the

ISMRM conference held in Berlin, at least 21 abstracts

used one of these expressions when referring to the

noise in magnitude MR images or the noise induced

bias of the pixel intensities that occurs in magnitude

MR images for low SNR. Unfortunately, these expres-

sions inherently attribute properties to the noise which

differ from those normally associated with noise. This

can lead to incorrect data processing if these effects

are not dealt with properly. The intention of the

authors is not to disapprove of existing works that

use these expressions but rather to make the readers

aware of the true statistical nature of noise in MR

magnitude images so that in the future more appropri-

ate, unambiguous terminology will be used.
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THEORY

It is well known that the noise, N(k), on the MR sig-

nal, S(k), can be described as an additive, uncorre-

lated, complex contribution to the pure MR signal

(1). Therefore, S(k) can be expressed as

SðkÞ ¼ SRðkÞ þ NRðkÞ þ j½SIðkÞ þ NIðkÞ�; [1]

where j ¼ ffiffiffiffiffiffiffi�1
p

, k is the location parameter of the

domain in which the signal is acquired, SR(k) and

SI(k) are the real and imaginary components of the

true (i.e., noiseless) raw signal, respectively, and

NR(k) and NI(k) are the real and imaginary noise con-

tributions, respectively. The elements of NR(k) and

NI(k) are independent, identically distributed and fol-

low a Gaussian distribution with zero mean and

standard deviation, sG (2, 3). The primary sources of

noise in MR are electronic (i.e., Johnson noise) and

dielectric and inductive coupling to the conducting

solution inside the body (4). Importantly, these physi-

cal contributions to the noise are independent of the

magnitude of the magnetization. The noise can gen-

erally be considered to be white noise that is both sta-

tionary and ergodic. Other contributions to the noise,

such as those derived from the quantization process

(5), are not considered in this analysis.

The Signal in the Image Domain

The MR signal induced in the receiver coil is a con-

tinuous complex signal acquired in a frequency do-

main commonly referred to as k-space. To analyze

the MRI data statistics in the image domain, the sig-

nal needs to be sampled at discrete locations of k-
space and then reconstructed using a standard recon-

struction algorithm, such as the Inverse Discrete Fou-

rier Transform (IDFT). The reconstructed image, s,
can be expressed as

s ¼ =�1 Sf g ¼ =�1 SR þ NR þ jðSI þ NIÞf g; [2]

where =�1fg represents the IDFT. For simplicity, k-
space is considered to have been sampled at uniform

Cartesian locations so that the effects of re-gridding

algorithms on the data statistics can be ignored.

Making use of the linearity property of the IDFT,

Eq. [2] can be written as

s ¼ =�1 SRf g þ j=�1 SIf g þ =�1 NRf g þ j=�1 NIf g
[3]

or

s ¼ AR þ jAI þ nR þ jnI; [4]

where AR þ jAI � =�1 SRf g þ j=�1 SIf g corresponds

to the reconstructed complex noiseless MR image

and n ¼ nR þ jnI � =�1 NRf g þ j=�1 NIf g is the

complex noise in the image domain. From Eq. [4] it

is clear that the noise in the image domain is still

additive. Furthermore, the real and imaginary parts

of the image noise are still zero mean Gaussian sig-

nals (a proof of this is presented in the Appendix)

and their PDFs can be written as

PðnR;IÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

g

q exp � n2R;I
2s2

g

 !
; [5]

where sg is the standard deviation of the Gaussian

noise in the image domain. The corresponding PDFs

for sR and sI, the real and imaginary components,

respectively, of the reconstructed noisy MR complex

image, are given by

PðsR;IÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

g

q exp � AR;I � sR;I
� �2

2s2
g

 !
: [6]

Magnitude Images

It is a common practice in MR to work with magni-

tude images rather than the complex ones. The mag-

nitude image, m, is computed as

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AR þ nRð Þ2 þ ðAI þ nIÞ2

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A cosjþ nRð Þ2 þ A sinjþ nIð Þ2

q
; [7]

where A and j are the magnitude and phase of the true,

noiseless image signal, respectively. Since this is a

nonlinear transformation, the distribution of pixel

intensities in the resulting image is, in general, not

Gaussian; the magnitude operation (2, 3) rectifies low
SNR signals causing the noise statistics to change.

Since sR and sI are independent their joint com-

plex PDF can be expressed as the product of their

individual PDFs:

Abbreviations

PDF probability density function

ROI region of interest

SNR signal to noise ratio

TE echo time
IDFT Inverse Discrete Fourier Transform
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PðsR; sIjA;j;sgÞ ¼ 1

2ps2
g

exp
� A cosj� sRð Þ2

2s2
g

" #

� exp
�ðA sinj� sIÞ2

2s2
g

" #
: ½8�

Changing to polar coordinates gives

Pðm; yjA;j;sgÞ ¼ 1

2ps2
g

exp
� A cosj� m cos yð Þ2

2s2
g

" #

� exp
�ðA sinj� m sin yÞ2

2s2
g

" #
J m; yð Þ; ½9�

where y is the phase of the reconstructed noisy image

signal and the determinant of the Jacobian matrix,

J(m, y), can be computed as:

J m; yð Þ ¼
qsR
qm

qsR
qy

qsI
qm

qsI
qy

��������

��������
¼ cos y �m sin y

sin y m cos y

����
����

¼ m cos2 yþ m sin2 y ¼ m: [10]

Integrating over a full y cycle and expanding the

polynomials gives the marginal PDF:

PmðmjA;j;sgÞ

¼ m

2ps2
g

Z 2p

0

exp

"
�A2ðsin2 jþ cos2 jÞ

2s2
g

#

� exp

��m2ðsin2 yþ cos2 yÞ
2s2

g

#

� exp

"
�2Amðcosj cos yþ sinj sin yÞ

2s2
g

#
dy ½11�

or

Pm mjA;j;sg

� � ¼ m

2ps2
g

�
Z 2p

0

exp
� A2 þ m2 � 2Am cos y� jð Þð Þ

2s2
g

" #
dy; ½12�

where the subscripted ‘‘m’’ indicates that the PDF is

for the magnitude of the signal only. Since the

phase, j, is a constant unaffected by the noise and

the integration in Eq. [12] is over a full cycle of a

cosine function, j can be dismissed, giving:

Pm mjA;sg

� � ¼ m

2ps2
g

exp � A2 þ m2ð Þ
2s2

g

" #

�
Z 2p

0

exp
Am cos y

s2
g

" #
dy: ½13�

This can also be written in terms of the 0th order

modified Bessel function of the first kind since:

I0 zð Þ ¼ 1

2p

Z 2p

0

exp z cos að Þ½ �da: [14]

Therefore, the PDF for a noisy magnitude MR

image (as shown by Bernstein et al. (6)) is given

by:

Pm mjA;sg

� � ¼ m

s2
g

exp � A2 þ m2ð Þ
2s2

g

" #
I0

Am

s2
g

 !
H mð Þ;

[15]

where H(m) is the Heaviside step function, which is

included in this expression to ensure mathematically

that the PDF is zero for negative values of m.
Equation 15 describes the Rician PDF (7) that

characterizes the distribution of MR pixel intensities

for most standard situations. Importantly, this func-

tion does not, in general, describe the distribution of

noise in the image—it is the distribution of pixel

intensities observed in the presence of noise. A few

MR imaging techniques such as ‘‘phase contrast’’ and

‘‘parallel imaging’’ result in slightly different PDFs

(8, 9).

Properties of the Rician Distribution

The Rician PDF has different characteristics, depend-

ing on the true noiseless signal strength, A. As stated
by Edelstein et al. (10) and later on by Gudbjartsson

and Patz (3), among others, in the absence of an MR

signal (i.e., when A ¼ 0), the Rician PDF reduces to

a Rayleigh PDF:

Pm mjsg

� � ¼ m

s2
g

exp � m2

2s2
g

" #
H mð Þ: [16]
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The mean, mh iRay, and standard deviation, sRay,

for the Rayleigh PDF are given by:

mh iRay¼ sg

ffiffiffi
p
2

r
[17]

and

sRay ¼ sg

ffiffiffiffiffiffiffiffiffiffiffi
2� p

2

r
; [18]

respectively. For high values of A/sg the Rician PDF

behaves like a Gaussian PDF:

Pm mjA;sg

� �� 1

sg

ffiffiffiffiffiffi
2p

p exp �
m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2þs2

g

q� �2
2s2

g

2
64

3
75H mð Þ:

[19]

This behavior can be seen in Fig. 1, where Rician

PDFs are shown for different values of A/sg. When

A/sg is small, the mean of the Rician PDF, mh iRice,
differs significantly from the true signal magnitude,

A. As A/sg increases, the Rician PDF starts to resem-

ble a Gaussian PDF, and mh iRice becomes a better

approximation of A. It should also be noted that the

width of the Rician distribution is a function of both

A and sg.

The inequality of mh iRice and the magnitude of the

true signal A, has been described by several authors

(2, 3, 11, 12) since it produces a bias in low SNR

MR magnitude values which can lead to inaccuracies

in the quantitative determination of MR parameters

such as the spin-spin relaxation time, T2, and the

apparent diffusion coefficient among others (8, 13,
14). This bias is sometimes referred to as the ‘‘Rician
noise bias’’. Several methods for compensating for

this effect have been proposed (2, 3, 11, 12, 13);
however, discussion of these topics is beyond the

scope of this article.

DISCUSSION

The use of the term Rician noise suggests that the

magnitude of the noise be equated with sr, the stand-

ard deviation of the Rician PDF. Noise defined in this

way is a function of A even though, as noted above,

the actual physical contributions to the noise do not

depend on A. The A-dependence of sr (12) is intro-

duced by the signal rectification that occurs when the

magnitude calculation is performed; it does not have

a physical source. This terminology is misleading

and can cause confusion.

One consequence of this concept of Rician noise
is that images corresponding to different TEs, for

example, but for which the acquisition procedure was

otherwise identical, would have different Rician
noise contributions, even though the physical contri-

butions to the noise have not changed. Another con-

sequence is that, in general, the noise characteristics

will change from pixel to pixel in the same image.

For example, in a standard head image the Rician
noise characteristics (i) in the background, (ii) in the

brain parenchyma, and (iii) in the cerebrospinal fluid

will all be different, even though it is the same

image.

A further complication with this concept of Rician
noise is that sr does not relate uniquely to the physi-

cal sources of noise since sr depends on both A and

sg. In other words, a measured value of sr does not

correspond to a specific value of sg since there are

many combinations of A and sg that produce the

same sr value. The width of the pixel intensity distri-

bution for a given value of A is characterized by sr,

but to consider this to be noise when a unique rela-

tionship with the physical sources of the noise does

not exist, is inadvisable.

A better approach when dealing with noise in MR

magnitude images is to relate it back to the Gaussian

noise on the real and imaginary signals. The standard

deviation of the Gaussian noise can readily be deter-

mined by implementing the automatic algorithm

Figure 1 The Rician probability density function (Eq.

[3]) plotted for several values of A/sg. These PDFs show

the transition from the Rayleigh PDF obtained for A ¼ 0

to a Gaussian shaped PDF as the value of A increases.

The second curve (A/sg ¼ 1), plotted as a dashed line,

illustrates how, for low A/sg values, the magnitude of the

true signal (A ¼ 1) differs quite significantly from the

mean of the Rician PDF (M ¼ 1.55).

412 CÁRDENAS-BLANCO ET AL.

Concepts in Magnetic Resonance Part A (Bridging Education and Research) DOI 10.1002/cmr.a



recently described in the literature by Sijbers et al.

(15) for calculating the mean or standard deviation

for a region of interest (ROI) located in the back-

ground of a magnitude image where A ¼ 0; as

described by Andersen (16). In this special case, the

Rician PDF reduces to a Rayleigh PDF and sg can

easily be determined from either the mean or the

standard deviation of the ROI (using Eqs. [17] or

[18]), assuming that the ROI has been carefully cho-

sen to avoid artefacts. In our experience it is better to

use the mean value since it is less likely to be

affected by processes such as Hanning filtering that

may be part of the image reconstruction process.

Noise determined in this way (e.g., from a back-

ground ROI) is independent of A and it has a unique

relationship with the physical sources of the noise. It

is a more meaningful quantity and its physical prop-

erties are more consistent with the behaviour nor-

mally associated with noise.

Another common misconception is that the noise

in MR magnitude images is ‘‘Rayleigh Noise’’ (e.g.,

see (17–19)). It is true that when A ¼ 0 the Rician

distribution reduces to a Rayleigh distribution and,

since there is no MR signal, this corresponds to the

noise distribution in this case. However, noise also

exists when A . 0 and the noise induced uncertain-

ties in the measured signals for this case do not corre-

spond to a Rayleigh distribution.

With the conventional concept of noise, the meas-

ured value of a quantity corresponds to the true

value, A, plus a contribution due to noise (see Eq.

[3]). Thus, for Gaussian noise the distribution of

measured values will also be Gaussian with the same

standard deviation for all values of A. For a Rician

PDF, this simple additive relationship between A and

the noise induced width of the PDF does not exist

since the shape of the distribution changes consider-

ably with the value of A (see Fig. 1).

The mean of the Rician PDF is not, in general,

equal to A. This difference is sometimes referred to

as ‘‘Rician noise bias’’ or, when A ¼ 0, as the

‘‘Rician noise floor’’. However, this bias is a conse-

quence of the asymmetry of the Rician (or Raleigh)

PDF when the SNR is low and is not directly related

to sr. Consequently, ‘‘Rician bias’’, ‘‘Rician (or Ray-
leigh) floor’’ and ‘‘rectified noise bias’’ would be

more appropriate terminology for this effect.

The discussion presented here has been limited to

the case where the signal was acquired with a con-

ventional quadrature receive coil. For the more gen-

eral situation, where a phased array coil is used for

signal detection, the PDF in the image domain is a

non-central Chi distribution (9) rather than a Rician

distribution. However, when the number of coils in

the phased array is small and when the SNR is low,

the PDF is asymmetric and is similar to the Rician

PDF. As a result, many of the comments made in the

discussion above for quadrature signal detection also

apply when phased array coils are used.

CONCLUSIONS

Noise on real and imaginary MR signals is Gaussian

but it manifests itself in magnitude images as a

Rician distribution of pixel intensities. For Gaussian

noise it is common practice to consider the ‘‘magni-

tude’’ of the noise to be the standard deviation of the

Gaussian PDF. Correspondingly, the use of the

expression ‘‘Rician noise’’ suggests that the magni-

tude of the noise should be set equal to sr, the stand-

ard deviation of the Rician PDF. However, noise

defined in this way has unusual properties such as the

noise magnitude being a function of A, the true noise-
less pixel intensity, and not having a unique relation-

ship to the physical sources of the noise. Therefore, it

is our contention that the use of the term ‘‘Rician
noise’’ causes confusion and should be avoided. A

better approach when dealing with noise in MR mag-

nitude images is to relate it back to sg, the Gaussian

noise on the real and imaginary image signals. Fur-

thermore, the difference between the mean of the

Rician PDF and A should be referred to as ‘‘Rician
bias’’ rather than ‘‘Rician noise bias’’ since it is due

to the asymmetry of the Rician PDF and not its

width.

NOMENCLATURE

A Magnitude of the true MR signal

AI Real component of true MR signal

AR Imaginary component of the true MR signal

=�1 Inverse descrete Fourier transform

H(m) Heaviside function

I0 Modified zeroth order Bessel function of the

first kind

J Jacobian matrix

j Imaginary unit

k Location parameter of the domain in which

the MR signal is acquired (k-space)
m Magnitude value of the image

hmi Mean of measured magnitude value

NR Real component of the noise in k-space
NI Imaginary component of the noise in k-space
n Noise in the image domain
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nR Real component of the noise in the image

domain

nI Imaginary component of the noise in the

image domain

p() Probability density function

S Signal of a pixel in k-space
SR Real component of the signal of a pixel in

k-space
SI Imaginary component of the signal of a pixel

in k-space
s Signal of a pixel in the image domain

j Phase of the true MR image

sG Standard deviation of the background

Gaussian noise in k-space

sg Standard deviation of the background

Gaussian noise in the image domain

y Phase of the noisy MR image

APPENDIX

The purpose of this appendix is to show that, when

the real and imaginary parts of the noise in k-space,
NR and NI, respectively, are both zero mean Gaussian

random variables, the PDFs of their IDFTs are also

zero mean Gaussian PDFs.

The IDFT of the complex Gaussian noise in k-
space can be written:

nðxÞ ¼ =�1 NR þ jNIf g

¼ 1

L

XL�1

k¼0

NR kð Þ þ jNI kð Þð Þ exp j2pxk
L

� �
; [A:1]

where L is the number of k-space samples. For sim-

plicity, a 1D IDFT is used here since the extension to

2D and 3D is straight forward. The PDFs for NR and

NI are given by:

PðNRÞ ¼ GNR
0;s2

G

� � � 1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

G

p exp � N2
R

2s2
G

� �
[A:2]

and

PðNIÞ ¼ GNI
0;s2

G

� � � 1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

G

p exp � N2
I

2s2
G

� �
; [A:3]

respectively, where the shorthand notation Gx(m,s
2)

has been introduced to designate a Gaussian PDF

with a mean of m and with a variance of s2, for the

variable x. It should be noted that since P(NR) and

P(NI) are Gaussian PDFs with the same mean and var-

iance, these functions are clearly equal, even though

they have been expressed above in terms of different

‘‘dummy’’ variables. The probability of getting a spe-

cific value for NR in a single measurement is identical

to the probability of getting the same value for NI in a

single measurement. In the following the subscript

will be dropped unless its inclusion adds clarity.

Equation [A.1] can be written in terms of its real

and imaginary parts using Euler’s formula for com-

plex numbers, ejy ¼ cosy þ jsiny. The result can be

expressed as:

n xð Þ ¼ nR xð Þ þ jnI xð Þ ¼ 1

L

XL�1

k¼0

p kð Þ þ jq kð Þð Þ;

[A:4]

where

pðkÞ � NRðkÞ cos yk � NI kð Þ sin ykð Þ; [A:5]

qðkÞ � NIðkÞ cos yk þ NR kð Þ sin ykð Þ [A:6]

and

yk � 2pxk
L

: [A:7]

To determine the PDF for p(k) the following prop-

erties of Gaussian PDFs can be used (20):

i. If x is a Gaussian random variate correspond-

ing to the PDF Gx(m,s
2), then cx is also a

Gaussian random variate and its PDF is

Gcx(cm,c
2s2), where c is a real constant.

ii. If xi are independent Gaussian random variates

corresponding to the PDFs Gxiðmxi ;s2
xi
Þ

then y ¼P
i

xi is also a Gaussian random

variate and its PDF is Gy

P
i mxi ;

P
i s

2
xi

� �
.

For a specific location, x, in image space, yk eval-
uates to a real constant which, in general, is different

for each term in the expansion. Thus, by property i),

the two terms in p(k) are each Gaussian variates with

PDFs given by GNR cos yk 0;s2
G cos2 yk

� �
and

GNI sin yk 0;s2
G sin2 yk

� �
, respectively. From property

ii) it can now be seen that p(k) is a Gaussian variate

and its PDF is:

P p kð Þð Þ ¼ Gp kð Þ 0;s2
G cos2 yk þ s2

G sin2 yk
� �

¼ G 0;s2
G

� �
: [A:8]

Similarly, it can be shown that q(k) is a Gaussian

random variate and its PDF is
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P q kð Þð Þ ¼ G 0;s2
G

� �
: [A:9]

By applying property ii) to deal with the sum and

then property i) to deal with the constant factor it can

also be seen that nR(x) and nI(k) are Gaussian random

variates and their PDFs are given by:

P nR xð Þð Þ ¼ P
1

L

XL�1

k¼0

p kð Þ
 !

¼ G 0;
s2
G

L

	 

[A:10]

and

P nI xð Þð Þ ¼ P
1

L

XL�1

k¼0

q kð Þ
 !

¼ G 0;
s2
G

L

	 

; [A:11]

respectively. This is the desired result.
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