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Abstract

What has happened in machine learning lately, and what does it mean for the future of medical image analysis? Machine
learning has witnessed a tremendous amount of attention over the last few years. The current boom started around 2009
when so-called deep artificial neural networks began outperforming other established models on a number of important
benchmarks. Deep neural networks are now the state-of-the-art machine learning models across a variety of areas, from
image analysis to natural language processing, and widely deployed in academia and industry. These developments have
a huge potential for medical imaging technology, medical data analysis, medical diagnostics and healthcare in general,
slowly being realized. We provide a short overview of recent advances and some associated challenges in machine learning
applied to medical image processing and image analysis. As this has become a very broad and fast expanding field we will
not survey the entire landscape of applications, but put particular focus on deep learning in MRI.

Our aim is threefold: (i) give a brief introduction to deep learning with pointers to core references, (ii) indicate how deep
learning has been applied to the entire MRI processing chain, from acquisition to image retrieval, from segmentation to
disease prediction; (iii) provide a starting point for people interested in experimenting and perhaps contributing to the field
of deep learning for medical imaging by pointing out good educational resources, state-of-the-art open-source code, and
interesting sources of data and problems related medical imaging.
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1 Introduction

user-friendly software frameworks, and an explosion of the

Machine learning has seen some dramatic developments available compute power, enabling the use of neural networks

recently, leading to a lot of interest from industry, academia
and popular culture. These are driven by breakthroughs in
artificial neural networks, often termed deep learning, a set
of techniques and algorithms that enable computers to dis-
cover complicated patterns in large data sets. Feeding the
breakthroughs is the increased access to data (“big data”),

that are deeper than ever before. These models nowadays form
the state-of-the-art approach to a wide variety of problems in
computer vision, language modeling and robotics.

Deep learning rose to its prominent position in computer
vision when neural networks started outperforming other
methods on several high-profile image analysis benchmarks.
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Most famously on the ImageNet Large-Scale Visual Recog-
nition Challenge (ILSVRC) in 2012 [1] when a deep learning
model (a convolutional neural network) halved the second best
error rate on the image classification task. Enabling comput-
ers to recognize objects in natural images was until recently
thought to be a very difficult task, but by now convolutional
neural networks have surpassed even human performance on
the ILSVRC, and reached a level where the ILSVRC classi-
fication task is essentially solved (i.e. with error rate close to
the Bayes rate). Deep learning techniques have become the de
facto standard for a wide variety of computer vision problems.
They are, however, not limited to image processing and analy-
sis but are outperforming other approaches in areas like natural
language processing [2—4], speech recognition and synthesis
[5,6],1 and in the analysis of unstructured, tabular-type data
using entity embeddings [7,8].”

The sudden progress and wide scope of deep learning,
and the resulting surge of attention and multi-billion dollar
investment, has led to a virtuous cycle of improvements and
investments in the entire field of machine learning. It is now
one of the hottest areas of study world-wide [14], and people
with competence in machine learning are highly sought-after
by both industry and academia.’

Healthcare providers generate and capture enormous
amounts of data containing extremely valuable signals and
information, at a pace far surpassing what “traditional” meth-
ods of analysis can process. Machine learning therefore
quickly enters the picture, as it is one of the best ways to
integrate, analyze and make predictions based on large, het-
erogeneous data sets (cf. health informatics [15]). Healthcare
applications of deep learning range from one-dimensional
biosignal analysis [16] and the prediction of medical events,
e.g. seizures [17] and cardiac arrests [18], to computer-aided
detection [19] and diagnosis [20] supporting clinical decision
making and survival analysis [21], to drug discovery [22] and
as an aid in therapy selection and pharmacogenomics [23], to
increased operational efficiency [24], stratified care delivery
[25], and analysis of electronic health records [26,27].

! Try it out here: https://deepmind.com/blog/wavenet-generative-model-
raw-audio.

2 As aperhaps unsurprising side-note, these modern deep learning methods
have also entered the field of physics. Among other things, they are tasked
with learning physics from raw data when no good mathematical models
are available. For example in the analysis of gravitational waves where deep
learning has been used for classification [9], anomaly detection [10] and
denoising [11], using methods that are highly transferable across domains
(think EEG and fMRI). They are also part of mathematical model and machine
learning hybrids [12,13], formed to reduce computational costs by having the
mathematical model train a machine learning model to perform its job, or to
improve the fit with observations in settings where the mathematical model
can’t incorporate all details (think noise).

3 See e.g. https://economicgraph.linkedin.com/research/LinkedIns-2017-
US-Emerging-Jobs-Report for a study focused on the US job market.

The use of machine learning in general and deep learning in
particular within healthcare is still in its infancy, but there are
several strong initiatives across academia, and multiple large
companies are pursuing healthcare projects based on machine
learning. Not only medical technology companies, but also for
example Google Brain [28-30],* DeepMind [31],° Microsoft
[32,33]° and IBM [34].7 There is also a plethora of small and
medium-sized businesses in the field.®

2 Machine learning, artificial neural
networks, deep learning

In machine learning one develops and studies methods that
give computers the ability to solve problems by learning from
experiences. The goal is to create mathematical models that
can be trained to produce useful outputs when fed input data.
Machine learning models are provided experiences in the form
of training data, and are tuned to produce accurate predictions
for the training data by an optimization algorithm. The main
goal of the models are to be able to generalize their learned
expertise, and deliver correct predictions for new, unseen data.
A model’s generalization ability is typically estimated during
training using a separate data set, the validation set, and used
as feedback for further tuning of the model. After several iter-
ations of training and tuning, the final model is evaluated on
a test set, used to simulate how the model will perform when
faced with new, unseen data.

There are several kinds of machine learning, loosely catego-
rized according to how the models utilize its input data during
training. In reinforcement learning one constructs agents that
learn from their environments through trial and error while
optimizing some objective function. A famous recent appli-
cation of reinforcement learning is AlphaGo and AlphaZero
[35], the Go-playing machine learning systems developed by
DeepMind. In unsupervised learning the computer is tasked
with uncovering patterns in the data without our guidance.
Clustering is a prime example. Most of today’s machine learn-
ing systems belong to the class of supervised learning. Here,
the computer is given a set of already labeled or annotated
data, and asked to produce correct labels on new, previously
unseen data sets based on the rules discovered in the labeled
data set. From a set of input-output examples, the whole
model is trained to perform specific data-processing tasks.
Image annotation using human-labeled data, e.g. classify-
ing skin lesions according to malignancy [36] or discovering

4 https://ai.google/research/teams/brain/healthcare-biosciences.

5 https://deepmind.com/applied/deepmind-health/.

6 https://www.microsoft.com/en-us/research/research-area/medical-health-
genomics.

7 https://www.research.ibm.com/healthcare-and-life-sciences.

8 Aidoc, Arterys, Ayasdi, Babylon Healthcare Services, BenevolentAl,
Enlitic, EnvoiAl, H20, IDx, MaxQ Al, Mirada Medical, Viz.ai, Zebra Med-
ical Vision, and many more.
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cardiovascular risk factors from retinal fundus photographs
[37], are two examples of the multitude of medical imaging
related problems attacked using supervised learning.

Machine learning has a long history and is split into many
sub-fields, of which deep learning is the one currently receiv-
ing the bulk of attention.

There are many excellent, openly available overviews and
surveys of deep learning. For short general introductions to
deep learning, see [38,39]. For an in-depth coverage, consult
the freely available book [40].% For a broad overview of deep
learning applied to medical imaging, see [41]. We will only
mention some bare essentials of the field, hoping that these
will serve as useful pointers to the areas that are currently the
most influential in medical imaging.

2.1 Artificial neural networks

Artificial neural networks (ANN5) is one of the most famous
machine learning models, introduced already in the 1950s, and
actively studied since [40,Chapter 1.2].1°

Roughly, a neural network consists of a number of con-
nected computational units, called neurons, arranged in layers.
There’s an input layer where data enters the network, followed
by one or more hidden layers transforming the data as it flows
through, before ending at an output layer that produces the
neural network’s predictions. The network is trained to output
useful predictions by identifying patterns in a set of labeled
training data, fed through the network while the outputs are
compared with the actual labels by an objective function. Dur-
ing training the network’s parameters — the strength of each
neuron — is tuned until the patterns identified by the network
result in good predictions for the training data. Once the pat-
terns are learned, the network can be used to make predictions
on new, unseen data, i.e. generalize to new data.

It has long been known that ANNs are very flexible, able
to model and solve complicated problems, but also that they
are difficult and very computationally expensive to train.'!
This has lowered their practical utility and led people to, until
recently, focus on other machine learning models. But by now,

9 https://www.deeplearningbook.org/.

10 The loose connection between artificial neural networks and neural net-
works in the brain is often mentioned, but quite over-blown considering the
complexity of biological neural networks. However, there is some interesting
recent work connecting neuroscience and artificial neural networks, indicat-
ing an increase in the cross-fertilization between the two fields [42—44].

1" According to the famous universal approximation theorem for artificial
neural networks [45-48], ANNs are mathematically able to approximate any
continuous function defined on compact subspaces of R”, using finitely many
neurons. There are some restrictions on the activation functions, but these can
be relaxed (allowing for ReLUs for example) by restricting the function space.
This is an existence theorem and successfully fraining a neural network to
approximate a given function is another matter entirely. However, the theorem
does suggest that neural networks are reasonable to study and develop fur-
ther, at least as an engineering endeavour aimed at realizing their theoretical
powers.

artificial neural networks form one of the dominant methods
in machine learning, and the most intensively studied. This
change is thanks to the growth of big data, powerful pro-
cessors for parallel computations (in particular, GPUs), some
important tweaks to the algorithms used to construct and train
the networks, and the development of easy-to-use software
frameworks. The surge of interest in ANNs leads to an incred-
ible pace of developments, which also drives other parts of
machine learning with it.

The freely available books [40,49] are two of the many
excellent sources to learn more about artificial neural net-
works. We’ll only give a brief indication of how they
are constructed and trained. The basic form of artificial
neural networks,'? the feedforward neural networks, are
parametrized mathematical functions y=f(x; #) that maps an
input X to an output y by feeding it through a number of
nonlinear transformations: f(x)=(f, o---o f1)(x). Here each
component fi, called a network layer, consists of a simple
linear transformation of the previous component’s output,
followed by a nonlinear function: f; = oj (GkT Jfx—1)- The non-
linear functions oy are typically sigmoid functions or ReL.Us,
as discussed below, and the 0, are matrices of numbers, called
the model’s weights. During the training phase, the network is
fed training data and tasked with making predictions at the out-
put layer that match the known labels, each component of the
network producing an expedient representation of its input. It
has to learn how to best utilize the intermediate representations
to form a complex hierarchical representation of the data, end-
ing in correct predictions at the output layer. Training a neural
network means changing its weights to optimize the outputs
of the network. This is done using an optimization algorithm,
called gradient descent, on a function measuring the correct-
ness of the outputs, called a cost function or loss function.
The basic ideas behind training neural networks are simple:
as training data is fed through the network, compute the gra-
dient of the loss function with respect to every weight using
the chain rule, and reduce the loss by changing these weights
using gradient descent. But one quickly meets huge compu-
tational challenges when faced with complicated networks
with thousands or millions of parameters and an exponential
number of paths between the nodes and the network output.
The techniques designed to overcome these challenges gets
quite complicated. See [40,Chapter 8,50,Chapters 3 and 4]
for detailed descriptions of the techniques and practical issues
involved in training neural networks.

Artificial neural networks are often depicted as a network
of nodes, as in Fig. 1.13

12 These are basic when compared to for example recurrent neural networks,
whose architectures are more involved.

13° As we shall see, modern architectures are often significantly more compli-
cated than captured by the illustration and equations above, with connections
between non-consecutive layers, input fed in also at later layers, multiple
outputs, and much more.
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Figure 1. Artificial neural networks are built from simple linear functions followed by nonlinearities. One of the simplest class of neural
network is the multilayer perceptron, or feedforward neural network, originating from the work of Rosenblatt in the 1950s [51]. It is based
on simple computational units, called neurons, organized in layers. Writing i for the ith layer and j for the jth unit of that layer, the output of
the jth unit at the ith layer is zy) = 9_(,-” " x. Here x consists of the outputs from the previous layer after they are fed through a simple nonlinear
function called an activation function, typically a sigmoid function o(z) = 1/(1 + %) or a rectified linear unit ReLU(z) = max(0, z) or small
variations thereof. Each layer therefore computes a weighted sum of the all the outputs from the neurons in the previous layers, followed
by a nonlinearity. These are called the layer activations. Each layer activation is fed to the next layer in the network, which performs the
same calculation, until you reach the output layer, where the network’s predictions are produced. In the end, you obtain a hierarchical
representation of the input data, where the earlier features tend to be very general, getting increasingly specific towards the output. By
feeding the network training data, propagated through the layers, the network is trained to perform useful tasks. A training data point (or,
typically, a small batch of training points) is fed to the network, the outputs and local derivatives at each node are recorded, and the difference
between the output prediction and the true label is measured by an objective function, such as mean absolute error (L1), mean squared error
(L2), cross-entropy loss, or Dice loss, depending on the application. The derivative of the objective function with respect to the output is
calculated and used as a feedback signal. The discrepancy is propagated backwards through the network and all the weights are updated to
reduce the error. This is achieved using backward propagation [52-54], which calculates the gradient of the objective function with respect
to the weights in each node using the chain rule together with dynamic programming, and gradient descent [55], an optimization algorithm
tasked with improving the weights.

2.2 Deep learning

Traditionally, machine learning models are trained to per-
form useful tasks based on manually designed features
extracted from the raw data, or features learned by other
simple machine learning models. In deep learning, the com-
puters learn useful representations and features automatically,
directly from the raw data, bypassing this manual and difficult
step. By far the most common models in deep learning are var-
ious variants of artificial neural networks, but there are others.
The main common characteristic of deep learning methods is
their focus on feature learning: automatically learning repre-
sentations of data. This is the primary difference between deep
learning approaches and more “classical” machine learning.
Discovering features and performing a task is merged into
one problem, and therefore both improved during the same
training process. See [38,40] for general overviews of the
field.

In medical imaging the interest in deep learning is mostly
triggered by convolutional neural networks (CNNs) [56],'* a
powerful way to learn useful representations of images and
other structured data. Before it became possible to use CNNs
efficiently, these features typically had to be engineered by
hand, or created by less powerful machine learning models.
Once it became possible to use features learned directly from
the data, many of the handcrafted image features were typ-
ically left by the wayside as they turned out to be almost
worthless compared to feature detectors found by CNNs. !>
There are some strong preferences embedded in CNNs based

14 Interestingly, CNNs was applied in medical image analysis already in the
early 90s, e.g. [57], but with limited success.

15 However, combining hand-engineered features with CNN features is a
very reasonable approach when low amounts of training data makes it difficult
to learn good features automatically.
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on how they are constructed, which helps us understand why
they are so powerful. Let us therefore take alook at the building
blocks of CNNs.

2.3 Building blocks of convolutional neural networks

When applying neural networks to images one can in prin-
ciple use the simple feedforward neural networks discussed
above. However, having connections from all nodes of one
layer to all nodes in the next is extremely inefficient. A care-
ful pruning of the connections based on domain knowledge,
i.e. the structure of images, leads to much better performance.
A CNNiis a particular kind of artificial neural network aimed at
preserving spatial relationships in the data, with very few con-
nections between the layers. The input to a CNN is arranged
in a grid structure and then fed through layers that preserve
these relationships, each layer operation operating on a small
region of the previous layer (Fig. 2). CNNs are able to form
highly efficient representation of the input data,'® well-suited
for image-oriented tasks. A CNN has multiple layers of convo-
lutions and activations, often interspersed with pooling layers,
and is trained using backpropagation and gradient descent as
for standard artificial neural networks. See Section 2.1. In
addition, CNNs typically have fully connected layers at the
end, which compute the final outputs.'”

(i) Convolutional layers: In the convolutional layers the acti-
vations from the previous layers are convolved with a set
of small parameterized filters, frequently of size 3 x 3,
collected in a tensor WU, where Jj is the filter number
and 7 is the layer number. By having each filter share the
exact same weights across the whole input domain, i.e.
translational equivariance at each layer, one achieves a
drastic reduction in the number of weights that need to be
learned. The motivation for this weight-sharing is that fea-
tures appearing in one part of the image likely also appear
in other parts. If you have a filter capable of detecting
horizontal lines, say, then it can be used to detect them
wherever they appear. Applying all the convolutional fil-
ters at all locations of the input to a convolutional layer
produces a tensor of feature maps.

(ii) Activation layer: The feature maps from a convolu-
tional layer are fed through nonlinear activation functions.
This makes it possible for the entire neural network to

16 Tt is interesting to compare this with the biological vision systems and
their receptive fields of variable size (volumes in visual space) of neurons at
different hierarchical levels.

17 Lately, so-called fully-convolution CNNs have become popular, in which
average pooling across the whole input after the final activation layer replaces
the fully-connected layers, significantly reducing the total number of weights
in the network.

approximate almost any nonlinear function [47,48].'% The
activation functions are generally the very simple recti-
fied linear units, or ReLLUs, defined as ReLLU(z) =max(0,
2), or variants like leaky ReLUs or parametric ReLUs.!”
See [59,60] for more information about these and other
activation functions. Feeding the feature maps through an
activation function produces new tensors, typically also
called feature maps.

(iii) Pooling: Each feature map produced by feeding the data
through one or more convolutional layer is then typically
pooled in a pooling layer. Pooling operations take small
grid regions as input and produce single numbers for each
region. The number is usually computed by using the max
function (max-pooling) or the average function (average
pooling). Since a small shift of the input image results in
small changes in the activation maps, the pooling layers
gives the CNN some translational invariance.

A different way of getting the downsampling effect
of pooling is to use convolutions with increased stride
lengths. Removing the pooling layers simplifies the
network architecture without necessarily sacrificing per-
formance [61].

Other common elements in many modern CNNs include

(iv) Dropout regularization: A simple idea that gave a huge
boost in the performance of CNNs. By averaging several
models in an ensemble one tend to get better performance
than when using single models. Dropout [62] is an aver-
aging technique based on stochastic sampling of neural
networks.”’ By randomly removing neurons during train-
ing one ends up using slightly different networks for each
batch of training data, and the weights of the trained
network are tuned based on optimization of multiple vari-
ations of the network.”!

(v) Batch normalization: These layers are typically placed
after activation layers, producing normalized activation
maps by subtracting the mean and dividing by the standard
deviation for each training batch. Including batch normal-
ization layers forces the network to periodically change
its activations to zero mean and unit standard deviation
as the training batch hits these layers, which works as a
regularizer for the network, speeds up training, and makes
it less dependent on careful parameter initialization [66].

18 A neural network with only linear activations would only be able to
perform linear approximation. Adding further layers wouldn’t improve its
expressiveness.

19 Other options include exponential linear units (ELUs), and the now rarely
used sigmoid or tanh activation functions.

20 The idea of dropout is also used for other machine learning models, as in
the DART technique for regression trees [63].

21 n addition to increased model performance, dropout can also be used to
produce robust uncertainty measures in neural networks. By leaving dropout
turned on also during inference one effectively performs variational inference
[58,64,65]. This relates standard deep neural networks to Bayesian neural
networks, synthesized in the field of Bayesian deep learning.
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Figure 2. Building blocks of a typical CNN. A slight modification of a figure in [58], courtesy of the author.

In the design of new and improved CNN architectures, these
components are combined in increasingly complicated and
interconnected ways, or even replaced by other more conve-
nient operations. When architecting a CNN for a particular
task there are multiple factors to consider, including under-
standing the task to be solved and the requirements to be met,
figuring out how to best feed the data to the network, and
optimally utilizing one’s budget for computation and mem-
ory consumption. In the early days of modern deep learning
one tended to use very simple combinations of the building
blocks, as in Lenet [56] and AlexNet [1]. Later network archi-
tectures are much more complex, each generation building on
ideas and insights from previous architectures, resulting in
updates to the state-of-the-art. Table 1 contains a short list of
some famous CNN architectures, illustrating how the building
blocks can be combined and how the field moves along.

These neural networks are typically implemented in one or
more of a small number of software frameworks that domi-
nates machine learning research, all built on top of NVIDIA’s
CUDA platform and the cuDNN library. Today’s deep learning
methods are almost exclusively implemented in either Tensor-
Flow, a framework originating from Google Research, Keras,
a deep learning library originally built by Francois Chollet
and recently incorporated in TensorFlow, or Pytorch, a frame-
work associated with Facebook Research. There are very few
exceptions (YOLO built using the Darknet framework [85]
is one of the rare ones). All the main frameworks are open
source and under active development.

3 Deep learning, medical imaging and MRI

Deep learning methods are increasingly used to improve
clinical practice, and the list of examples is long, growing
daily. We will not attempt a comprehensive overview of deep

learning in medical imaging, but merely sketch some of the
landscape before going into a more systematic exposition of
deep learning in MRI.

Convolutional neural networks can be used for efficiency
improvement in radiology practices through protocol determi-
nation based on short-text classification [86]. They can also
be used to reduce the gadolinium dose in contrast-enhanced
brain MRI by an order of magnitude [87] without significant
reduction in image quality. Deep learning is applied in radio-
therapy [88], in PET-MRI attenuation correction [89,90], in
radiomics [91,92] (see [93] for a review of radiomics related
to radiooncology and medical physics), and for theranostics
in neurosurgical imaging, combining confocal laser endomi-
croscopy with deep learning models for automatic detection
of intraoperative CLE images on-the-fly [94].

Another important application area is advanced deformable
image registration, enabling quantitative analysis across dif-
ferent physical imaging modalities and across time.>> For
example elastic registration between 3D MRI and transrec-
tal ultrasound for guiding targeted prostate biopsy [95];
deformable registration for brain MRI where a “cue-aware
deep regression network” learns from a given set of train-
ing images the displacement vector associated with a pair
of reference-subject patches [96]; fast deformable image
registration of brain MR image pairs by patch-wise pre-
diction of the Large Deformation Diffeomorphic Metric
Mapping model [97]%%; unsupervised convolutional neural
network-based algorithm for deformable image registra-
tion of cone-beam CT to CT using a deep convolutional
inverse graphics network [98]; deep learning-based 2D/3D

22 E.g. test-retest examinations, or motion correction in dynamic imaging.
23 Available at https:/github.com/rkwitt/quicksilver.
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Table 1

A far from exhaustive, non-chronological, list of CNN architectures and some high-level descriptions.

AlexNet

VGG

GoogLeNet

ResNet

Highway nets

DenseNet

ResNext
SENets

NASNet

YOLO

GANs

Siamese nets

U-net

V-net

(1]

[68]

[69]

[71]

[74]
[75]

[76]

[78]

[79]

[80]

[82]

[84]

The network that launched the current deep learning boom by winning the 2012 ILSVRC competition by a huge margin.
Notable features include the use of RELUs, dropout regularization, splitting the computations on multiple GPUs, and
using data augmentation during training. ZFNet [67], a relatively minor modification of AlexNet, won the 2013
ILSVRC competition.

Popularized the idea of using smaller filter kernels and therefore deeper networks (up to 19 layers for VGG19, compared
to 7 for AlexNet and ZFNet), and training the deeper networks using pre-training on shallower versions.

Promoted the idea of stacking the layers in CNNs more creatively, as networks in networks, building on the idea of [70].
Inside a relatively standard architecture (called the stem), GoogLeNet contains multiple inception modules, in which
multiple different filter sizes are applied to the input and their results concatenated. This multi-scale processing allows
the module to extract features at different levels of detail simultaneously. GoogLeNet also popularized the idea of not
using fully-connected layers at the end, but rather global average pooling, significantly reducing the number of model
parameters. It won the 2014 ILSVRC competition.

Introduced skip connections, which makes it possible to train much deeper networks. A 152 layer deep ResNet won the
2015 ILSVRC competition, and the authors also successfully trained a version with /001 layers. Having skip
connections in addition to the standard pathway gives the network the option to simply copy the activations from layer to
layer (more precisely, from ResNet block to ResNet block), preserving information as data goes through the layers.
Some features are best constructed in shallow networks, while others require more depth. The skip connections facilitate
both at the same time, increasing the network’s flexibility when fed input data. As the skip connections make the
network learn residuals, ResNets perform a kind of boosting.

Another way to increase depth based on gating units, an idea from Long Short Term Memory (LSTM) recurrent
networks, enabling optimization of the skip connections in the network. The gates can be trained to find useful
combinations of the identity function (as in ResNets) and the standard nonlinearity through which to feed its input.
Builds on the ideas of ResNet, but instead of adding the activations produced by one layer to later layers, they are simply
concatenated together. The original inputs in addition to the activations from previous layers are therefore kept at each
layer (again, more precisely, between blocks of layers), preserving some kind of global state. This encourages feature
reuse and lowers the number of parameters for a given depth. DenseNets are therefore particularly well-suited for
smaller data sets (outperforming others on e.g. Cifar-10 and Cifar-100).

Builds on ResNet and GoogLeNet by using inception modules between skip connections.

Squeeze-and-Excitation Networks, which won the ILSVRC 2017 competition, builds on ResNext but adds trainable
parameters that the network can use to weigh each feature map, where earlier networks simply added them up. These
SE-blocks allows the network to model the channel and spatial information separately, increasing the model capacity.
SE-blocks can easily be added to any CNN model, with negligible increase in computational costs.

A CNN architecture designed by a neural network, beating all the previous human-designed networks at the ILSVRC
competition. It was created using AutoML,* Google Brain’s reinforcement learning approach to architecture design
[77]. A controller network (a recurrent neural network) proposes architectures aimed to perform at a specific level for a
particular task, and by trial and error learns to propose better and better models. NASNet was based on Cifar-10, and has
relatively modest computational demands, but still outperformed the previous state-of-the-art on ILSVRC data.
Introduced a new, simplified way to do simultaneous object detection and classification in images. It uses a single CNN
operating directly on the image and outputting bounding boxes and class probabilities. It incorporates several elements
from the above networks, including inception modules and pretraining a smaller version of the network. It’s fast enough
to enable real-time processing.” YOLO makes it easy to trade accuracy for speed by reducing the model size.
YOLOV3-tiny was able to process images at over 200 frames per second on a standard benchmark data set, while still
producing reasonable predictions.

A generative adversarial network consists of two neural networks pitted against each other. The generative network G is
tasked with creating samples that the discriminative network D is supposed to classify as coming from the generative
network or the training data. The networks are trained simultaneously, where G aims to maximize the probability that D
makes a mistake while D aims for high classification accuracy.

An old idea (e.g. [81]) that’s recently been shown to enable one-shot learning, i.e. learning from a single example. A
Siamese network consists of two identical neural networks, both the architecture and the weights, attached at the end.
They are trained together to differentiate pairs of inputs. Once trained, the features of the networks can be used to
perform one-shot learning without retraining.

A very popular and successful network for segmentation in 2D images. When fed an input image, it is first downsampled
through a “traditional” CNN, before being upsampled using transpose convolutions until it reaches its original size. In
addition, based on the ideas of ResNet, there are skip connections that concatenates features from the downsampling to
the upsampling paths. It is a fully-convolutional network, using the ideas first introduced in [83].

A three-dimensional version of U-net with volumetric convolutions and skip connections as in ResNet.

2 https://cloud.google.com/automl.
b You can watch YOLO in action here https:/youtu.be/VOC3hugHrss.
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registration frame-work for registration of preoperative 3D
data and intraoperative 2D X-ray images in image-guided
therapy [99]; real-time prostate segmentation during targeted
prostate biopsy, utilizing temporal information in the series of
ultrasound images [100].

This is just a tiny sliver of the many applications of
deep learning to central problems in medical imaging.
There are several thorough reviews and overviews of the
field to consult for more information, across modalities
and organs, and with different points of view and level of
technical details. For example the comprehensive review
[101],2* covering both medicine and biology and spanning
from imaging applications in healthcare to protein-protein
interaction and uncertainty quantification; key concepts of
deep learning for clinical radiologists [102—111], includ-
ing radiomics and imaging genomics (radiogenomics) [112],
and toolkits and libraries for deep learning [113]; deep
learning in neuroimaging and neuroradiology [114]; brain
segmentation [115]; stroke imaging [116,117]; neuropsy-
chiatric disorders [118]; breast cancer [119,120]; chest
imaging [121]; imaging in oncology [122-124]; medical
ultrasound [125,126]; and more technical surveys of deep
learning in medical image analysis [41,127-129]. Finally,
for those who like to be hands-on, there are many instruc-
tive introductory deep learning tutorials available online.
For example [130], with accompanying code available
at https://github.com/paras42/Hello_World_Deep_Learning,
where you’ll be guided through the construction of a
system that can differentiate a chest X-ray from an
abdominal X-ray using the Keras/TensorFlow frame-
work through a Jupyter Notebook. Other nice tutorials
are http://bit.ly/adltktutorial, based on the Deep Learn-
ing Toolkit (DLTK) [131], and https://github.com/usuyama/
pydata-medical-image, based on the Microsoft Cognitive
Toolkit (CNTK).

Let’s now turn to the field of MRI, in which deep learning
has seen applications at each step of entire workflows. From
acquisition to image retrieval, from segmentation to disease
prediction. We divide this into two parts: (i) the signal pro-
cessing chain close to the physics of MRI, including image
restoration and multimodal image registration (Fig. 3), and (ii)
the use of deep learning in MR image segmentation, disease
detection, disease prediction and systems based on images and
text data (reports), addressing a few selected organs such as
the brain, the kidney, the prostate and the spine (Fig. 4).

3.1 From image acquisition to image registration
Deep learning in MRI has typically been focused on

segmentation and classification of reconstructed magni-
tude images. Its penetration into the lower levels of MRI

24 A continuous collaborative manuscript (https:/greenelab.github.io/
deep-review) with >500 references.

measurement techniques is more recent, but already impres-
sive. From MR image acquisition and signal processing in
MR fingerprinting, to denoising and super-resolution, and into
image synthesis.

3.1.1 Data acquisition and image reconstruction

Research on CNN and RNN-based image reconstruc-
tion methods is rapidly increasing, pioneered by Yang
et al. [132] at NIPS 2016 and Wang et al. [133] at
ISBI 2016. Recent applications addresses e.g. convolutional
recurrent neural networks for dynamic MR image reconstruc-
tion [134], reconstructing good quality cardiac MR images
from highly undersampled complex-valued k-space data by
learning spatio-temporal dependencies, outperforming 3D
CNN approaches and compressed sensing-based dynamic
MRI reconstruction algorithms in computational complexity,
reconstruction accuracy and speed for different undersam-
pling rates. Schlemper et al. [135] created a deep cascade
of concatenated CNNs for dynamic MR image reconstruction,
making use of data augmentation, both rigid and elastic defor-
mations, to increase the variation of the examples seen by the
network and reduce overfitting.”> Using variational networks
for single-shot fast spin-echo MRI with variable density sam-
pling, Chen et al. [136] enabled real-time (200 ms per section)
image reconstruction, outperforming conventional parallel
imaging and compressed sensing reconstruction. In [137], the
authors explored the potential for transfer learning (pretrained
models) and assessed the generalization of learned image
reconstruction regarding image contrast, SNR, sampling pat-
tern and image content, using a variational network and true
measurement k-space data from patient knee MRI record-
ings and synthetic k-space data generated from images in the
Berkeley Segmentation Data Set and Benchmarks. Employ-
ing least-squares generative adversarial networks (GANs) that
learns texture details and suppresses high-frequency noise,
[138] created a novel compressed sensing framework that
can produce diagnostic quality reconstructions “on the fly”
(30ms).”® A unified framework for image reconstruction
[139], called automated transform by manifold approxima-
tion (AUTOMAP) consisting of a feedforward deep neural
network with fully connected layers followed by a sparse
convolutional autoencoder, formulate image reconstruction
generically as a data-driven supervised learning task that gen-
erates a mapping between the sensor and the image domain
based on an appropriate collection of training data (e.g. MRI
examinations collected from the Human Connectome Project,
transformed to the k-space sensor domain).

25 Code available at https:/github.com/js3611/Deep-MRI-Reconstruction.
26 n their GAN setting, a generator network is used to map undersampled
data to a realistic-looking image with high measurement fidelity, while a dis-
criminator network is trained jointly to score the quality of the reconstructed
image.
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Figure 3. Deep learning in the MR signal processing chain, from image acquisition (in complex-valued k-space) and image reconstruction,
to image restoration (e.g. denoising) and image registration. The rightmost column illustrates coregistration of multimodal brain MRI.
sMRI = structural 3D T1-weighted MRI, dMRI = diffusion weighted MRI (stack of slices in blue superimposed on sMRI), fMRI = functional

BOLD MRI (in red).
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Figure 4. Deep learning for MR image analysis in selected organs, partly from ongoing work at MMIV.

There are also other approaches and reports on deep
learning in MR image reconstruction, e.g. [140-143], a fun-
damental field rapidly progressing.

3.1.2 Quantitative parameters — QSM and MR
fingerprinting

Another area that is developing within deep learning for
MRI is the estimation of quantitative tissue parameters from
recorded complex-valued data. For example within quanti-
tative susceptibility mapping, and in the exciting field of
magnetic resonance fingerprinting.

Quantitative susceptibility mapping (QSM) is a growing
field of research in MRI, aiming to noninvasively estimate
the magnetic susceptibility of biological tissue [ 144,145]. The
technique is based on solving the difficult, ill-posed inverse
problem of determining the magnetic susceptibility from local
magnetic fields. Recently Yoon et al. [146] constructed a
three-dimensional CNN, named QSMnet and based on the
U-Net architecture, able to generate high quality suscepti-
bility source maps from single orientation data. The authors
generated training data by using the gold-standard for QSM:
the so-called COSMOS method [147]. The data was based
on 60 scans from 12 healthy volunteers. The resulting model
both simplified and improved the state-of-the-art for QSM.
Rasmussen and coworkers [148] took a different approach.
They also used a U-Net-based convolutional neural network
to perform field-to-source inversion, called DeepQSM, but it

was trained on synthetically generated data containing simple
geometric shapes such as cubes, rectangles and spheres. After
training their model on synthetic data it was able to generalize
to real-world clinical brain MRI data, computing susceptibil-
ity maps within seconds end-to-end. The authors conclude that
their method, combined with fast imaging sequences, could
make QSM feasible in standard clinical practice.

Magnetic resonance fingerprinting (MRF) was introduced
a little more than five years ago [149], and has been called
“a promising new approach to obtain standardized imaging
biomarkers from MRI” by the European Society of Radiology
[150]. It uses a pseudo-randomized acquisition that causes the
signals from different tissues to have a unique signal evolution
(“fingerprint”) that is a function of the multiple material prop-
erties being investigated. Mapping the signals back to known
tissue parameters (T1, T2 and proton density) is then a rather
difficult inverse problem. MRF is closely related to the idea of
compressed sensing [151] in MRI [152] in that MRF under-
samples data in k-space producing aliasing artifacts in the
reconstructed images that can be suppressed by compressed
sensing.”’ It can be regarded as a quantitative multiparamet-
ric MRI analysis, and with recent acquisition schemes using a
single-shot spiral trajectory with undersampling, whole-brain

27 See [153-157] for recent perspectives and developments connecting deep
learning-based reconstruction methods to the more general research field of
inverse problems.
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coverage of Ty, T» and proton density maps can be acquired at
1.2 x 1.2 x 3 mm? voxel resolution in less than 5 min [158].

The processing of MRF after acquisition usually involves
using various pattern recognition algorithms that try to match
the fingerprints to a predefined dictionary of predicted signal
evolutions,?® created using the Bloch equations [149,163].

Recently, deep learning methodology has been applied to
MR fingerprinting. Cohen et al. [164] reformulated the MRF
reconstruction problem as learning an optimal function that
maps the recorded signal magnitudes to the corresponding
tissue parameter values, trained on a sparse set of dictionary
entries. To achieve this they fed voxel-wise MRI data acquired
with an MRF sequence (MRF-EPI, 25 frames in ~3s; or
MRF-FISP, 600 frames in ~7.5s) to a four-layer neural net-
work consisting of two hidden layers with 300 x 300 fully
connected nodes and two nodes in the output layer, consid-
ering only T and T, parametric maps. The network, called
MRF Deep RecOnstruction NEtwork (DRONE), was trained
by an adaptive moment estimation stochastic gradient descent
algorithm with a mean squared error loss function. Their dic-
tionary consisted of ~70,000 entries (product of discretized
Ty and T, values) and training the network to convergence
with this dictionary (~10MB for MRF-EPI and ~300 MB
for MRF-FISP) required 10 to 70 min using an NVIDIA K80
GPU with 2GB memory. They found their reconstruction
time (10 to 70 ms per slice) to be 300 to 5000 times faster
than conventional dictionary-matching techniques, using both
well-characterized calibrated ISMRM/NIST phantoms and
in vivo human brains.

A similar deep learning approach to predict quantitative
parameter values (77 and 73) from MRF time series was taken
by Hoppe et al. [165]. In their experiments they used 2D MRF-
FISP data with variable TR (12—-15ms), flip angles (5-74°)
and 3000 repetitions, recorded on a MAGNETOM 3T Skyra.
A high resolution dictionary was simulated to generate a large
collection of training and testing data, using tissues T and
T, relaxation time ranges as present in normal brain at 3T
(e.g. [166]) resulting in ~1.2 x 107 time series. In contrast
to [164], their deep neural network architecture was inspired
from the domain of speech recognition due to the similarity
of the two tasks. The architecture with the smallest average
error for validation data was a standard convolutional neural
network consisting of an input layer of 3000 nodes (number of
samples in the recorded time series), four hidden layers, and
an output layers with two nodes (7 and 7). Matching one
time series was about 100 times faster than the conventional
[149] matching method and with very small mean absolute
deviations from ground truth values.

28 A dictionary of time series for every possible combination of param-
eters like (discretized) T and T, relaxation times, spin-density (M), Bo,
off-resonance (Af), and also voxel-wise cerebral blood volume (CBV), mean
vessel radius (R), blood oxygen saturation (SO;) and T [159-161], and
more, e.g. MFR-ASL [162].

In the same context, Fang et al. [167] used a deep learning
method to extract tissue properties from highly undersampled
2D MRF-FISP data in brain imaging, where 2300 time points
were acquired from each measurement and each time point
consisted of data from one spiral readout only. The real and
imaginary parts of the complex signal were separated into two
channels. They used MRF signal from a patch of 32 x 32 pix-
els to incorporate correlated information between neighboring
pixels. In their work they designed a standard three-layer CNN
with T and T as output.

Virtue et al. [168] investigated a different approach to
MRE. By generating 100,000 synthetic MRI signals using
a Bloch equation simulator they were able to train feedfor-
ward deep neural networks to map new MRI signals to the
tissue parameters directly, producing approximate solutions
to the inverse mapping problem of MRF. In their work they
designed a new complex activation function, the complex
cardioid, that was used to construct a complex-valued feedfor-
ward neural network. This three-layer network outperformed
both the standard MRF techniques based on dictionary match-
ing, and also the analogous real neural network operating on
the real and imaginary components separately. This suggested
that complex-valued networks are better suited at uncovering
information in complex data.”’

3.1.3 Image restoration (denoising, artifact detection)

Estimation of noise and image denoising in MRI has been an
important field of research for many years [171,172], employ-
ing a plethora of methods. For example Bayesian Markov
random field models [173], rough set theory [174], higher-
order singular value decomposition [175], wavelets [176],
independent component analysis [177], or higher order PDEs
[178].

Recently, deep learning approaches have been introduced
to denoising. In their work on learning implicit brain MRI
manifolds using deep neural networks, Bermudez et al. [179]
implemented an autoencoder with skip connections for image
denoising, testing their approach with adding various levels
of Gaussian noise to more than 500 T1-weighted brain MR
images from healthy controls in the Baltimore Longitudinal
Study of Aging. Their autoencoder network outperformed the
current FSL SUSAN denoising software according to peak
signal-to-noise ratios. Benou et al. [180] addressed spatio-
temporal denoising of dynamic contrast-enhanced MRI of the
brain with bolus injection of contrast agent (CA), proposing a
novel approach using ensembles of deep neural networks for
noise reduction. Each DNN was trained on a different range
of SNRs and types of CA concentration time curves (denoted

“pathology experts”, “healthy experts”, “vessel experts”) to

29 Complex-valued deep learning is also getting some attention in a broader
community of researchers, and has been shown to lead to improved models.
See e.g. [169,170] and the references therein.
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generate a reconstruction hypothesis from noisy input by
using a classification DNN to select the most likely hypoth-
esis and provide a “clean output” curve. Training data was
generated synthetically using a three-parameter Tofts phar-
macokinetic (PK) model and noise realizations. To improve
this model, accounting for spatial dependencies of PK phar-
macokinetics, they used concatenated noisy time curves from
first-order neighbourhood pixels in their expert DNNs and
ensemble hypothesis DNN, collecting neighboring recon-
structions before a boosting procedure produced the final
clean output for the pixel of interest. They tested their trained
ensemble model on 33 patients from two different DCE-
MRI databases with either stroke or recurrent glioblastoma
(RIDER NEURO?), acquired at different sites, with differ-
ent imaging protocols, and with different scanner vendors and
field strengths. The qualitative and quantitative (MSE) denois-
ing results were better than spatiotemporal Beltrami, moving
average, the dynamic Non Local Means method [181], and
stacked denoising autoencoders [182]. The run-time compar-
isons were also in favor of the proposed sDNN. In this context
of DCE-MRI, it’s tempting to speculate whether deep neural
network approaches could be used for direct estimation of
tracer-kinetic parameter maps from highly undersampled (k,
f)-space data in dynamic recordings [183,184], a powerful
way to by-pass 4D DCE-MRI reconstruction altogether and
map sensor data directly to spatially resolved pharmacokinetic
parameters, e.g. K", Vp, Ve in the extended Tofts model or
parameters in other classic models [185]. A related approach
in the domain of diffusion MRI, by-passing the model-fitting
steps and computing voxelwise scalar tissue properties (e.g.
radial kurtosis, fiber orientation dispersion index) directly
from the subsampled DWIs was taken by Golkov et al. [186]
in their proposed “g-space deep learning” family of methods.

Deep learning methods has also been applied to MR artifact
detection, e.g. poor quality spectra in MRSI [187]; detection
and removal of ghosting artifacts in MR spectroscopy [188];
and automated reference-free detection of patient motion arti-
facts in MRI [189].

3.1.4 Image super-resolution

Image super-resolution, reconstructing a higher-resolution
image or image sequence from the observed low-resolution
image [190], is an exciting application of deep learning
methods.>!

Super-resolution for MRI have been around for almost 10
years [191,192] and can be used to improve the trade-off
between resolution, SNR, and acquisition time [193], gener-
ate 7T-like MR images on 3T MRI scanners [194], or obtain
super-resolution T; maps from a set of low resolution T

30 https://wiki.cancerimagingarchive.net/display/Public/RIDER+NEURO+
MRI.

31 See http://course.fast.ai/lessons/lesson 14.html for an instructive introduc-
tion to super-resolution.

weighted images [195]. Recently deep learning approaches
has been introduced, e.g. generating super-resolution single
(no reference information) and multi-contrast (applying a
high-resolution image of another modality as reference) brain
MR images using CNNs [196]; constructing superresolution
brain MRI by a CNN stacked by multi-scale fusion units [ 197];
and super-resolution musculoskeletal MRI (“DeepResolve”)
[198]. In DeepResolve thin (0.7 mm) slices in knee images
(DESS) from 124 patients included in the Osteoarthritis Ini-
tiative were used for training and 17 patients for testing, with
a 10s inference time per 3D (344 x 344 x 160) volume. The
resulting images were evaluated both quantitatively (MSE,
PSNR, and the perceptual window-based structural similarity
SSIM?? index) and qualitatively by expert radiologists.

3.1.5 Image synthesis

Image synthesis in MRI have traditionally been seen as a
method to derive new parametric images or new tissue contrast
from a collection of MR acquisition performed at the same
imaging session, i.e. “an intensity transformation applied to
a given set of input images to generate a new image with a
specific tissue contrast” [199]. Another avenue of MRI syn-
thesis is related to quantitative imaging and the development
and use of physical phantoms, imaging calibration/standard
test objects with specific material properties. This is done
in order to assess the performance of an MRI scanner or to
assess imaging biomarkers reliably with application-specific
phantoms such as a structural brain imaging phantom, DCE-
MRI perfusion phantom, diffusion phantom, flow phantom,
breast phantom or a proton-density fat fraction phantom [200].
The in silico modeling of MR images with certain underlying
properties, e.g. [201,202], or model-based generation of large
databases of (cardiac) images from real healthy cases [203]
is also part of this endeavour. In this context, deep learning
approaches have accelerated research and the amount of costly
training data.

The last couple of years have seen impressive results for
photo-realistic image synthesis using deep learning tech-
niques, especially generative adversarial networks (GANS,
introduced by Goodfellow et al. in 2014 [79]), e.g. [204-206].
These can also be used for biological image synthesis
[207,208] and text-to-image synthesis [209-21 1133 Recently,
a group of researchers from NVIDIA, MGH & BWH Center
for Clinical Data Science in Boston, and the Mayo Clinic in
Rochester [212] designed a clever approach to generate syn-
thetic abnormal MRI images with brain tumors by training a
GAN based on pix2pix’* using two publicly available data sets
of brain MRI (ADNI and the BRATS’ 15 Challenge, and later
also the Ischemic Stroke Lesion Segmentation ISLES’2018

32 http://www.cns.nyu.edu/~Icv/ssim.

33 See here https://github.com/xinario/awesome-gan-for-medical-imaging
for a list of interesting applications of GAN in medical imaging.

34 https://phillipi.github.io/pix2pix.
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Challenge). This approach is highly interesting as medical
imaging datasets are often imbalanced, with few patholog-
ical findings, limiting the training of deep learning models.
Such generative models for image synthesis serve as a form
of data augmentation, and also as an anonymization tool.
The authors achieved comparable tumor segmentation results
when trained on the synthetic data rather than on real patient
data. A related approach to brain tumor segmentation using
coarse-to-fine GANs was taken by Mok and Chung [213].
Guibas et al. [214] used a two-stage pipeline for generating
synthetic medical images from a pair of GANSs, addressing
retinal fundus images, and provided an online repository (Syn-
thMed) for synthetic medical images. Kitchen and Seah [215]
used GANSs to synthetize realistic prostate lesions in To, ADC,
K" resembling the SPIE-AAPM-NCI ProstateX Challenge
2016 training data.

Other applications are unsupervised synthesis of TlI-
weighted brain MRI using a GAN [179]; image synthesis
with context-aware GANs [216]; synthesis of patient-
specific transmission image for PET attenuation correction in
PET/MR imaging of the brain using a CNN [217]; pseudo-CT
synthesis for pelvis PET/MR attenuation correction using a
Dixon-VIBE Deep Learning (DIVIDE) network [218]; image
synthesis with GANSs for tissue recognition [219]; synthetic
data augmentation using a GAN for improved liver lesion clas-
sification [220]; and deep MR to CT synthesis using unpaired
data [221].

3.1.6 Image registration

Image registration’® is an increasingly important field
within MR image processing and analysis as more comple-
mentary and multiparametric tissue information are collected
in space and time within shorter acquisition times, at higher
spatial (and temporal) resolutions, often longitudinally, and
across patient groups, larger cohorts, or atlases. Tradition-
ally one has divided the tasks of image registration into
dichotomies: intra vs. inter-modality, intra vs. inter-subject,
rigid vs. deformable, geometry-based vs. intensity-based, and
prospective vs. retrospective image registration. Mathemati-
cally, registration is a challenging mix of geometry (spatial
transformations), analysis (similarity measures), optimiza-
tion strategies, and numerical schemes. In prospective motion
correction, real-time MR physics is also an important part
of the picture [223,224]. A wide range of methodological
approaches have been developed and tested for various organs

35 https://www.aapm.org/GrandChallenge/PROSTATEx-2.

36 Image registration can be defined as “the determination of a one-to-one
mapping between the coordinates in one space and those in another, such that
points in the two spaces that correspond to the same anatomical point are
mapped to each other” (C.R Maurer [222], 1993).

and applications®’ [228-237], including “previous genera-
tion” artificial neural networks [238].

Recently, deep learning methods have been applied to
image registration in order to improve accuracy and speed
(e.g. Section 3.4 in [41]). For example: deformable image
registration [97,239]; model-to-image registration [240,241];
MRI-based attenuation correction for PET [242,243];
PET/MRI dose calculation [244]; unsupervised end-to-end
learning for deformable registration of 2D CT/MR images
[245]; an unsupervised learning model for deformable, pair-
wise 3D medical image registration by Balakrishnan et al.
[246]%%; and a deep learning framework for unsupervised
affine and deformable image registration [247].

3.2 From image segmentation to diagnosis and
prediction

We leave the lower-level applications of deep learning
in MRI to consider higher-level (down-stream) applications
such as fast and accurate image segmentation, disease pre-
diction in selected organs (brain, kidney, prostate, and spine)
and content-based image retrieval, typically applied to recon-
structed magnitude images. We have chosen to focus our
overview on deep learning applications close to the MR
physics and will be brief in the present section, even if
the following applications are very interesting and clinically
important.

3.2.1 Image segmentation

Image segmentation, the holy grail of quantitative image
analysis, is the process of partitioning an image into multiple
regions that share similar attributes, enabling localization and
quantification.’® It has an almost 50 years long history, and
has become the biggest target for deep learning approaches
in medical imaging. The multispectral tissue classification
report by Vannier et al. in 1985 [248], using statistical pat-
tern recognition techniques (and satellite image processing
software from NASA), represented one of the most semi-
nal works leading up to today’s machine learning in medical
imaging segmentation. In this early era, we also had the oppor-
tunity to contribute with supervised and unsupervised machine
learning approaches for MR image segmentation and tissue
classification [249-252]. An impressive range of segmenta-
tion methods and approaches have been reported (especially
for brain segmentation) and reviewed, e.g. [253-261]. MR
image segmentation using deep learning approaches, typically
CNNs, are now penetrating the whole field of applications.

37 And different hardware e.g. GPUs [225-227] as image registration is
often computationally time consuming.

38 With code available at https://github.com/voxelmorph/voxelmorph.

39 Segmentation is also crucial for functional imaging, enabling tissue phys-
iology quantification with preservation of anatomical specificity.
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For example acute ischemic lesion segmentation in DWI
[262]; brain tumor segmentation [263]; segmentation of the
striatum [264]; segmentation of organs-at-risks in head and
neck CT images [265]; and fully automated segmentation
of polycystic kidneys [266]; deformable segmentation of
the prostate [267]; and spine segmentation with 3D mul-
tiscale CNNs [268]. See [41,101] for more comprehensive
lists.

3.2.2 Diagnosis and prediction

A presumably complete list of papers up to 2017 using
deep learning techniques for brain image analysis is pro-
vided as Table 1 in Litjens at al. [41]. In the Table 2 we
add some more recent work on organ-specific deep learning
using MRI, restricting ourselves to brain, kidney, prostate and
spine.

3.3 Content-based image retrieval

The objective of content-based image retrieval (CBIR)
in radiology is to provide medical cases similar to a given
image in order to assist radiologists in the decision-making
process. It typically involves large case databases, clever
image representations and lesion annotations, and algorithms
that are able to quickly and reliably match and retrieve
the most similar images and their annotations in the case
database. CBIR has been an active area of research in med-
ical imaging for many years, addressing a wide range of
applications, imaging modalities, organs, and methodologi-
cal approaches, e.g. [297-303], and at a larger scale outside
the medical field using deep learning techniques, e.g. at
Microsoft, Apple, Facebook, and Google (reverse image
search?®), and others. See e.g. [304-308] and the code repos-
itories https://github.com/topics/image-retrieval. One of the
first application of deep learning for CBIR in the medical
domain came in 2015 when Sklan et al. [309] trained a CNN
to perform CBIR with more than one million random MR and
CT images, with disappointing results (true positive rate of
20%) on their independent test set of 2100 labeled images.
Medical CBIR is now, however, dominated by deep learning
algorithms [310-312]. As an example, by retrieving medical
cases similar to a given image, Pizarro et al. [278] developed
a CNN for automatically inferring the contrast of MRI scans
based on the image intensity of multiple slices. Recently,
deep learning methods have also been used for automated
generation of radiology reports, typically incorporating long-
short-term-memory (LSTM) network models to generate the

40 See “search by image” https://images.google.com/https://developers.
google.com/custom-search, and also https://tineye.com, indexing more than
30 billion images.

textual paragraphs [313-316], and also to identify findings in
radiology reports [317-319].

4 Open science and reproducible research in
machine learning for medical imaging

Machine learning is moving at a breakneck speed, too fast
for the standard peer-review process to keep up. Many of the
most celebrated and impactful papers in machine learning
over the past few years are only available as preprints, or
published in conference proceedings long after their results
are well-known and incorporated in the research of others.
Bypassing peer-review has some downsides, of course, but
these are somewhat mitigated by researchers’ willingness to
share code and data.*!

Most of the main new ideas and methods are posted to the
arXiv preprint server,*> and the accompanying code shared
on the GitHub platform.*? The data sets used are often openly
available through various repositories. This, in addition to the
many excellent online educational resources,** makes it easy
to get started in the field. Select a problem you find inter-
esting based on openly available data, a method described in
a preprint, and an implementation uploaded to GitHub. This
forms a good starting point for an interesting machine learning
project.

Another interesting aspect about modern machine learning
and data science is the prevalence of competitions, with the
annual ImageNet ILSVRC competition as the main driver of
progress in deep learning for computer vision since 2012.
Each competition typically draws large number of partici-
pants, and the top results often push the state-of-the art to
a new level. In addition to inspiring new ideas, competitions
also provide natural entry points to modern machine learn-
ing. It is interesting to note how deep learning-based models
are completely dominating the leaderboards of essentially all
image-based competitions. Other machine learning models,
or non-machine learning-based techniques, have largely been
outclassed.

What’s true about the openness of machine learning in gen-
eral is increasingly true also for the sub-field of machine
learning for medical image analysis. We’ve listed a few
examples of openly available implementations, data sets and
challenges in Tables 3-5.

41 In the spirit of sharing and open science, we've created a GitHub
repository to accompany our article, available at https://github.com/
MMIV-ML/DLMI2018.

42 http://arxiv.org.

43 https://github.com.

4 For example http://www.fast.ai, https://www.deeplearning.ai, http:/
cs231n.stanford.edu, https://developers.google.com/machine-learning/crash-
course.
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https://github.com/MMIV-ML/DLMI2018
https://github.com/MMIV-ML/DLMI2018
http://arxiv.org/
https://github.com/
http://www.fast.ai/
https://www.deeplearning.ai/
http://cs231n.stanford.edu/
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Table 2

A short list of deep learning applications per organ, task, reference and description.

Brain
Brain extraction
Functional connectomes

Structural connectomes

Brain age

Alzheimer’s disease

Vascular lesions
Identification of MRI
contrast

Meningioma

Glioma

Multiple sclerosis

Kidney
Abdominal organs

Cyst segmentation
Renal transplant

Prostate
Cancer (PCa)

[269]
[270]
[271]

[272]

[273]
[274]

[275]
[276]

[277]
[278]

[279]

[285]

[266]
[286]

[287]

[288]

[289]

[290]

[291]

[292]

A 3D CNN for skull stripping

Transfer learning approach to enhance deep neural network classification of brain functional connectomes
Multisite diagnostic classification of schizophrenia using discriminant deep learning with functional connectivity
MRI

A convolutional neural network-based approach (https://github.com/MIC-DKFZ/TractSeg) that directly
segments tracts in the field of fiber orientation distribution function (fODF) peaks without using tractography,
image registration or parcellation. Tested on 105 subjects from the Human Connectome Project

Chronological age prediction from raw brain T1-MRI data, also testing the heritability of brain-predicted age
using a sample of 62 monozygotic and dizygotic twins

Landmark-based deep multi-instance learning evaluated on 1526 subjects from three public datasets (ADNI-1,
ADNI-2, MIRIAD)

Identify different stages of AD

Multimodal and multiscale deep neural networks for the early diagnosis of AD using structural MR and
FDG-PET images

Evaluation of a deep learning approach for the segmentation of brain tissues and white matter hyperintensities of
presumed vascular origin in MRI

Using deep learning algorithms to automatically identify the brain MRI contrast, with implications for managing
large databases

Fully automated detection and segmentation of meningiomas using deep learning on routine multiparametric
MRI

Glioblastoma segmentation using heterogeneous MRI data from clinical routine

Deep learning for segmentation of brain tumors and impact of cross-institutional training and testing

Automatic semantic segmentation of brain gliomas from MRI using a deep cascaded neural network
AdaptAhead optimization algorithm for learning deep CNN applied to MRI segmentation of glioblastomas
(BRATS)

Deep learning of joint myelin and T1w MRI features in normal-appearing brain tissue to distinguish between
multiple sclerosis patients and healthy controls

CNNss to improve abdominal organ segmentation, including left kidney, right kidney, liver, spleen, and stomach
in T>-weighted MR images

An artificial multi-observer deep neural network for fully automated segmentation of polycystic kidneys

A deep-learning-based classifier with stacked non-negative constrained autoencoders to distinguish between
rejected and non-rejected renal transplants in DWI recordings

Proposed a method for end-to-end prostate segmentation by integrating holistically (image-to-image) nested
edge detection with fully convolutional networks. Their nested networks automatically learn a hierarchical
representation that can improve prostate boundary detection. Obtained very good results (Dice coefficient, 5-fold
cross validation) on MRI scans from 250 patients

Computer-aided diagnosis with a CNN, deciding ‘cancer’ ‘no cancer’ trained on data from 301 patients with a
prostate-specific antigen level of <20 ng/mL who underwent MRI and extended systematic prostate biopsy with
or without MRI-targeted biopsy

Automatic approach based on deep CNN, inspired from VGG, to classify PCa and noncancerous tissues with
multiparametric MRI using data from the PROSTATEX database

Deep CNN and a non-deep learning using feature detection (the scale-invariant feature transform and the
bag-of-words model, a representative method for image recognition and analysis) were used to distinguish
pathologically confirmed PCa patients from prostate benign conditions patients with prostatitis or prostate
benign hyperplasia in a collection of 172 patients with more than 2500 morphologic 2D T>-w MR images
Designed a system which can concurrently identify the presence of PCa in an image and localize lesions based
on deep CNN features (co-trained CNNs consisting of two parallel convolutional networks for ADC and Ta-w
images respectively) and a single-stage SVM classifier for automated detection of PCa in multiparametric MRI.
Evaluated on a dataset of 160 patients

Designed and tested multimodel CNNs, using clinical data from 364 patients with a total of 463 PCa lesions and
450 identified noncancerous image patches. Carefully investigated three critical factors which could greatly
affect the performance of their multimodal CNNs but had not been carefully studied previously: (1) Given
limited training data, how can these be augmented in sufficient numbers and variety for fine-tuning deep CNN
networks for PCa diagnosis? (2) How can multimodal mp-MRI information be effectively combined in CNNs?
(3) What is the impact of different CNN architectures on the accuracy of PCa diagnosis?


https://github.com/MIC-DKFZ/TractSeg
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Table 2 (Continued)

Spine
Vertebrae labeling [293] Designed a CNN for detection and labeling of vertebrae in MR images with clinical annotations as training data
Intervertebral disc [268] 3D multi-scale fully connected CNNs with random modality voxel dropout learning for intervertebral disc
localization localization and segmentation from multi-modality MR images
Disc-level labeling, spinal [294] CNN model denoted DeepSPINE, having a U-Net architecture combined with a spine-curve fitting method for
stenosis grading automated lumbar vertebral segmentation, disc-level designation, and spinal stenosis grading with a natural
language processing scheme
Lumbal neural forminal [295] Addressed the challenge of automated pathogenesis-based diagnosis, simultaneously localizing and grading
stenosis (LNFS) multiple spinal structures (neural foramina, vertebrae, intervertebral discs) for diagnosing LNFS and discover
pathogenic factors. Proposed a deep multiscale multitask learning network integrating a multiscale multi-output
learning and a multitask regression learning into a fully convolutional network where (i) a DMML-Net merges
semantic representations to reinforce the salience of numerous target organs (i) a DMML-Net extends
multiscale convolutional layers as multiple output layers to boost the scale-invariance for various organs, and
(iii) a DMML-Net joins the multitask regression module and the multitask loss module to combine the mutual
benefit between tasks
Spondylitis vs [296] CNN model for differentiating between tuberculous and pyogenic spondylitis in MR images. Compared their
tuberculosis CNN performance with that of three skilled radiologists using spine MRIs from 80 patients
Metastasis [290] A multi-resolution approach for spinal metastasis detection using deep Siamese neural networks comprising
three identical subnetworks for multi-resolution analysis and detection. Detection performance was evaluated on
a set of 26 cases using a free-response receiver operating characteristic analysis (observer is free to mark and rate
as many suspicious regions as are considered clinically reportable)
Table 3
A short list of openly available code for ML in medical imaging.
Summary Reference Implementation
NiftyNet. An open source convolutional neural networks platform [320,321] http://niftynet.io
for medical image analysis and image-guided therapy
DLTK. State of the art reference implementations for deep learning [131] https://github.com/DLTK/DLTK
on medical images
DeepMedic [322] https://github.com/Kamnitsask/deepmedic
U-Net: Convolutional Networks for Biomedical Image [323] https://Imb.informatik.uni-freiburg.de/people/ronneber/u-net
Segmentation
V-net [84] https://github.com/faustomilletari/VNet
SegNet: A Deep Convolutional EncoderDecoder Architecture for [324] https://mi.eng.cam.ac.uk/projects/segnet
Robust Semantic Pixel-Wise Labelling
Brain lesion synthesis using GANs [212] https://github.com/khcs/brain-synthesis-lesion-segmentation
GANCS: Compressed Sensing MRI based on Deep Generative [325] https://github.com/gongenhao/GANCS
Adversarial Network
Deep MRI Reconstruction [135] https://github.com/js3611/Deep-MRI-Reconstruction
Graph Convolutional Networks for brain analysis in populations, [326] https://github.com/parisots/population-gcn

combining imaging and non-imaging data

5 Challenges, limitations and future
perspectives

It is clear that deep neural networks are very useful when
one is tasked with producing accurate decisions based on
complicated data sets. But they come with some significant
challenges and limitations that you either have to accept or
try to overcome. Some are general: from technical challenges
related to the lack of mathematical and theoretical underpin-
nings of many central deep learning models and techniques,
and the resulting difficulty in deciding exactly what it is that
makes one model better than another, to societal challenges
related to maximization and spread of the technological ben-
efits [327,328] and the problems related to the tremendous

amounts of hype and excitement.*> Others are more domain-
specific.

In deep learning for standard computer vision tasks, like
object recognition and localization, powerful models and a
set of best practices have been developed over the last few
years. The pace of development is still incredibly high, but
certain things seem to be settled, at least momentarily. Using

4 Lipton: Machine Learning: The Opportunity and the Opportunists

https://www.technologyreview.com/video/612109, Jordan: Artificial Intel-
ligence — The Revolution Hasn’t Happened Yet https://medium.com/
@mijordan3/artificial-intelligence-the-revolution-hasnt-happened-yet-
Seld5812ele7.
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https://github.com/khcs/brain-synthesis-lesion-segmentation
https://github.com/gongenhao/GANCS
https://github.com/js3611/Deep-MRI-Reconstruction
https://github.com/parisots/population-gcn
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Table 4

A short list of medical imaging data sets and repositories.

Name Summary Link

OpenNeuro An open platform for sharing neuroimaging data under the public domain license. https://openneuro.org®
Contains brain images from 168 studies (4,718 participants) with various imaging
modalities and acquisition protocols.

UK Biobank  Health data from half a million participants. Contains MRI images from 15,000 http://www.ukbiobank.ac.uk/
participants, aiming to reach 100,000.

TCIA The cancer imaging archive hosts a large archive of medical images of cancer http://www.cancerimagingarchive.net
accessible for public download. Currently contains images from 14,355 patients
across 77 collections.

ABIDE The autism brain imaging data exchange. Contains 1114 datasets from 521 individuals  http://fcon_1000.projects.nitrc.org/indi/abide
with Autism Spectrum Disorder and 593 controls.

ADNI The Alzheimer’s disease neuroimaging initiative. Contains image data from almost http://adni.loni.usc.edu/

2000 participants (controls, early MCI, MCI, late MCI, AD)

# Data can be downloaded from the AWS S3 Bucket https://registry.opendata.aws/openneuro.

Table 5
A short list of medical imaging competitions.

Name Summary

Link

Grand-Challenges

Grand challenges in biomedical image

https://grand-challenge.org/

analysis. Hosts and lists a large number of

competitions
RSNA Pneumonia Detection Challenge
radiographs
HVSMR 2016
from a 3D cardio-vascular magnetic
resonance image
ISLES 2018

Automatically locate lung opacities on chest

Segment the blood pool and myocardium

Ischemic Stroke Lesion Segmentation 2018.

https://www.kaggle.com/c/rsna-pneumonia-detection-challenge

http://segchd.csail.mit.edu/

http://www.isles-challenge.org/

The goal is to segment stroke lesions based

on acute CT perfusion data.
BraTS 2018

goal is to segment brain tumors in

multimodal MRI scans.
CAMELYON17

Multimodal Brain Tumor Segmentation. The

The goal is to develop algorithms for

http://www.med.upenn.edu/sbia/brats2018.html

https://camelyon17.grand-challenge.org/Home

automated detection and classification of
breast cancer metastases in whole-slide
images of histological lymph node sections.

ISIC 2018
Detection
Kaggle’s 2018 Data Science Bowl Spot Nuclei. Speed Cures.
Kaggle’s 2017 Data Science Bowl
Cancer
Kaggle’s 2016 Data Science Bowl
Disease
MURA

or abnormal

Skin Lesion Analysis Towards Melanoma

Turning Machine Intelligence Against Lung
Transforming How We Diagnose Heart

Determine whether a bone X-ray is normal

https://challenge2018.isic-archive.com/

https://www.kaggle.com/c/data-science-bowl-2018
https://www.kaggle.com/c/data-science-bowl-2017

https://www.kaggle.com/c/second-annual-data-science-bowl

https://stanfordmlgroup.github.io/competitions/mura/

the basic building blocks described above, placed according
to the ideas behind, say, ResNet and SENet, will easily result
in close to state-of-the-art performance on two-dimensional
object detection, image classification and segmentation
tasks.

However, the story for deep learning in medical imag-
ing is not quite as settled. One issue is that medical images
are often three-dimensional, and three-dimensional convo-
Iutional neural networks are as well-developed as their 2D
counterparts. One quickly meet challenges associated to

memory and compute consumption when using CNNs with
higher-dimensional image data, challenges that researchers
are trying various approaches to deal with (treating 3D as
stacks of 2Ds, patch- or segment-based training and inference,
downscaling, etc.). Itis clear that the ideas behind state-of-the-
art two-dimensional CNNs can be lifted to three dimensions,
but also that adding a third spatial dimension results in addi-
tional constraints. Other important challenges are related to
data, trust, interpretability, workflow integration, and regula-
tions, as discussed below.


https://openneuro.org/
http://www.ukbiobank.ac.uk/
http://www.cancerimagingarchive.net/
http://fcon_1000.projects.nitrc.org/indi/abide
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http://segchd.csail.mit.edu/
http://www.isles-challenge.org/
http://www.med.upenn.edu/sbia/brats2018.html
https://camelyon17.grand-challenge.org/Home
https://challenge2018.isic-archive.com/
https://www.kaggle.com/c/data-science-bowl-2018
https://www.kaggle.com/c/data-science-bowl-2017
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https://stanfordmlgroup.github.io/competitions/mura/

118

A.S. Lundervold, A. Lundervold/Z Med Phys 29 (2019) 102-127

5.1 Data

This is a crucially important obstacle for deep neural net-
works, especially in medical data analysis. When deploying
deep neural networks, or any other machine learning model,
one is instantly faced with challenges related to data access,
privacy issues, data protection, and more.

As privacy and data protection is often a requirement when
dealing with medical data, new techniques for training models
without exposing the underlying training data to the user of
the model are necessary. It is not enough to merely restrict
access to the training set used to construct the model, as it
is easy to use the model itself to discover details about the
training set [329]. Even hiding the model and only exposing
a prediction interface would still leave it open to attack, for
example in the form of model-inversion [330] and member-
ship attacks [331]. Most current work on deep learning for
medical data analysis use either open, anonymized data sets
(as those in Table 4), or locally obtained anonymized research
data, making these issues less relevant. However, the general
deep learning community are focusing a lot of attention on
the issue of privacy, and new techniques and frameworks for
federated learning [332]* and differential privacy [333-335]
are rapidly improving. There are a few examples of these ideas
entering the medical machine learning community, as in [336]
where the distribution of deep learning models among several
medical institutions was investigated, but then without consid-
ering the above privacy issues. As machine learning systems
in medicine grows to larger scales, perhaps even including
computations and learning on the “edge”, federated learning
and differential privacy will likely become the focus of much
research in our community.

If you are able to surmount these obstacles, you will be
confronted with deep neural networks’ insatiable appetite for
training data. These are very inefficient models, requiring
large number of training samples before they can produce
anything remotely useful, and labeled training data is typi-
cally both expensive and difficult to produce. In addition, the
training data has to be representative of the data the network
will meet in the future. If the training samples are from a data
distribution that is very different from the one met in the real
world, then the network’s generalization performance will be
lower than expected. See [337] for a recent exploration of
this issue. Considering the large difference between the high-
quality images one typically work with when doing research
and the messiness of the real, clinical world, this can be a major
obstacle when putting deep learning systems into production.

Luckily there are ways to alleviate these problems some-
what. A widely used technique is transfer learning, also called
fine-tuning or pre-training: first you train a network to perform
a task where there is an abundance of data, and then you copy

46 See for example https://ai.googleblog.com/2017/04/federated-learning-
collaborative.html.

weights from this network to a network designed for the task at
hand. For two-dimensional images one will almost always use
a network that has been pre-trained on the ImageNet data set.
The basic features in the earlier layers of the neural network
found from this data set typically retain their usefulness in any
other image-related task (or are at least form a better starting
point than random initialization of the weights, which is the
alternative). Starting from weights tuned on a larger training
data set can also make the network more robust. Focusing
the weight updates during training on later layers requires
less data than having to do significant updates throughout the
entire network. One can also do interorgan transfer learning
in 3D, an idea we have used for kidney segmentation, where
pre-training a network to do brain segmentation decreased the
number of annotated kidneys needed to achieve good segmen-
tation performance [338]. The idea of pre-training networks
is not restricted to images. Pre-training entire models has
recently been demonstrated to greatly impact the performance
of natural language processing systems [2—4].

Another widely used technique is augmenting the training
data set by applying various transformations that preserves the
labels, as in rotations, scalings and intensity shifts of images,
or more advanced data augmentation techniques like anatomi-
cally sound deformations, or other data set specific operations
(for example in our work on kidney segmentation from DCE-
MRI, where we used image registration to propagate labels
through a time course of images [339]). Data synthesis, as in
[212], is another interesting approach.

In short, as expert annotators are expensive, or simply not
available, spending large computational resources to expand
your labeled training data set, e.g. indirectly through transfer
learning or directly through data augmentation, is typically
worthwhile. But whatever you do, the way current deep neu-
ral networks are constructed and trained results in significant
data size requirements. There are new ways of construct-
ing more data-efficient deep neural networks on the horizon,
for example by encoding more domain-specific elements in
the neural network structure as in the capsule systems of
[340,341], which adds viewpoint invariance. It is also possi-
ble to add attention mechanisms to neural networks [342,343],
enabling them to focus their resources on the most informative
components of each layer input.

However, the networks that are most frequently used, and
with the best raw performance, remain the data-hungry stan-
dard deep neural networks.

5.2 Interpretability, trust and safety

As deep neural networks relies on complicated inter-
connected hierarchical representations of the training data
to produce its predictions, interpreting these predictions
becomes very difficult. This is the “black box™ problem
of deep neural networks [344]. They are capable of pro-
ducing extremely accurate predictions, but how can you
trust predictions based on features you cannot understand?
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Considerable effort goes into developing new ways to deal
with this problem, including DARPA launching a whole pro-
gram “Explainable AI **’ dedicated to this issue, and lots of
research going into enhancing interpretability [345,346], and
finding new ways to measure sensitivity and visualize features
[67,347-350].

Another way to increase their trustworthiness is to make
them produce robust uncertainty estimates in addition to
predictions. The field of Bayesian Deep Learning aims to
combine deep learning and Bayesian approaches to uncer-
tainty. The ideas date back to the early 90s [351-353], but
the field has recently seen renewed interest from the machine
learning community at large, as new ways of computing uncer-
tainty estimates from state of the art deep learning models have
been developed [58,64,354]. In addition to producing valuable
measures that function as uncertainty measures [65,355,356],
these techniques can also lessen deep neural networks suscep-
tibility to adversarial attacks [354,357].

5.3 Workflow integration, regulations

Another stumbling block for successful incorporation of
deep learning methods is workflow integration. It is possible to
end up developing clever machine learning system for clinical
use that turn out to be practically useless for actual clini-
cians. Attempting to augment already established procedures
necessitates knowledge of the entire workflow. Involving the
end-user in the process of creating and evaluating systems can
make this a little less of an issue, and can also increase the end
users’ trust in the systems,*® as you can establish a feedback
loop during the development process. But still, even if there is
interest on the “ground floor”” and one is able to get prototype
systems into the hands of clinicians, there are many higher-
ups to convince and regulatory, ethical and legal hurdles to
overcome.

5.4 Perspectives and future expectations

Deep learning in medical data analysis is here to stay. Even
though there are many challenges associated to the intro-
duction of deep learning in clinical settings, the methods
produce results that are too valuable to discard. This is illus-
trated by the tremendous amounts of high-impact publications
in top-journals dealing with deep learning in medical imag-
ing (for example [16,20,29,31,39,89,136,139,161,272,284],
all published in 2018). As machine learning researchers and
practitioners gain more experience, it will become easier to
classify problems according to what solution approach is the
most reasonable: (i) best approached using deep learning tech-
niques end-to-end, (ii) best tackled by a combination of deep

47 https://www.darpa.mil/program/explainable-artificial-intelligence.
48 This is the approach we have taken at our MMIV center https://mmiv.no,
located inside the Department of Radiology.

learning with other techniques, or (iii) no deep learning com-
ponent at all.

Beyond the application of machine learning in medi-
cal imaging, we believe that the attention in the medical
community can also be leveraged to strengthen the general
computational mindset among medical researchers and practi-
tioners, mainstreaming the field of computational medicine.*
Once there are enough high-impact software-systems based
on mathematics, computer science, physics and engineering
entering the daily workflow in the clinic, the acceptance for
other such systems will likely grow. The access to bio-sensors
and (edge) computing on wearable devices for monitoring dis-
ease or lifestyle, plus an ecosystem of machine learning and
other computational medicine-based technologies, will then
likely facilitate the transition to a new medical paradigm that
is predictive, preventive, personalized, and participatory — P4
medicine [359].%°
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