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We have developed radiofrequency coils for high-field head and whole-body 
imaging which achieve near optimal rf field (Br) homogeneity and signal-to-noise 
ratio (SNR). The design, based on a lumped element delay line, has a number of 
advantages. The rf field uniformity is significantly better than that of a saddle coil 
or slotted tube resonator. The improved Br homogeneity is needed to generate 
accurate multiecho pulse sequences. Using this coil, we obtain, as expected, the 
nearly linear increase in signal-to-noise as a function of frequency or static magnetic 
field I30 (I). The coil’s cylindrical symmetry allows quadrature drive and reception 
which decreases rf power requirements by a factor of two and increases signal-to- 
noise by a factor of fi (2). Our head-size coil and body-size coil operate at 64 
MHz. Designs for operation at lower frequencies or somewhat higher frequencies 
are possible. Small scale versions of this coil design should be applicable to 
conventional NMR spectroscopy. 

The use of a superconducting solenoidal magnet for whole-body MR imaging 
requires a transverse rf field within a cylindrical volume. A perfectly homogeneous 
transverse magnetic field in an infinitely long cylinder can be produced by a surface 
current which runs along the length of the cylinder and is proportional to sin 8, 
where 0 is the cylindrical coordinate azimuthal angle. The conventional saddle coil 
(3) actually approximates the ideal sinusoidal current distribution for six equally 
spaced values of 0 (0 = 0, 60, 120, 180, 240, 300”). Four conductors carry currents 
of equal magnitude whereas no conductors are needed at 8 = 0 and 180” because 
the currents there are zero. To improve the approximation to the ideal current 
distribution with more conductors requires a means of developing unequal, sinusoi- 
dally weighted currents in adjacent conductors. A standing wave in a transmission 
line generates the required sinusoidal current distribution. Hinshaw and Gauss (4) 
employ this principle by winding a one-wavelength-long coaxial cable onto a toroidal 
form. They removed the coaxial shielding from the cable lying on the inner diameter 
of the toroid. The exposed portions of the center conductor of the cable generate a 
homogeneous rf magnetic field in the inner bore of the toroid. This structure is 
limited to lower frequencies by the need to wind a many-turn toroid from a single 
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FIG. 1. Low-pass version of a birdcage resonator. (a) Circular end ring; (b) straight segment; (c) 
capacitor. 

wavelength of cable. Roeschmann (5) demonstrated the high-frequency, one-turn 
limit of this structure at 85 MHz by exposing the center conductor at only two 
places. His coil has a lower rf field homogeneity similar to that of a saddle coil. 

Our design, which we call a “birdcage” resonator, is shown in its low-pass version 
in Fig. 1. It consists of two circular end rings connected by N equally spaced straight 
segments, each of which includes a capacitance C. The birdcage resonator can be 
analyzed using a lumped element balanced delay line (Fig. 2) with ends connected 
to form a closed loop. All the inductors LQ, representing the straight segments, are 
coupled to each other by mutual inductance. Likewise, all of the 2L1 inductors, 
representing the individual segments of the end rings, are inductively coupled. The 
resonant phenomena can be understood by considering wave propagation in a 
periodic structure (6). Periodic boundary conditions apply to the closed loop. Each 
of the N repeated elements of the transmission line introduces a phase shift A4(w). 

FIG. 2. Lumped element equivalent circuit of a low-pass birdcage. Points w and x connect to points y 
and z, respectively. 



624 COMMUNICATIONS 

The total phase shift must be an integer multiple of 2n; hence, the resonant 
condition is NA4(o) = 27rM. A straightforward deviation of A$(o) is possible if the 
network is simplified by setting LZ and all mutual inductances equal to zero. The 
simplified network is a low-pass filter and has a spectrum with N/2 resonances 
(assuming N is even) at frequencies given by 

7rM w = -f& sin 7 [II 

where 1 G M G N/2. A standing wave in the low-frequency mode (M = 1) generates 
currents in straight segments proportional to sin 6’ which produce a homogeneous 
B1 field inside the cylinder. Higher frequency resonant modes produce increasingly 
less homogeneous B1 fields as M increases. For M = N/2, adjacent straight segments 
have currents equal in magnitude but of opposite phase. Setting L2 to a realistic 
nonzero value is equivalent to replacing C with C’ = C/(1 - w2L2C) in Eq. [I]. 
Hence Lz lowers the higher frequency resonant modes disproportionately and causes 
a compression of the network’s spectrum. On the other hand, reintroducing the 
mutual inductance tends to spread out the spectrum. We have also developed a 
high-pass version of the birdcage in which the capacitors are spaced around the end 
rings and the straight segments are the chief inductors. 

An alternative interpretation of the low-pass birdcage resonator may provide 
some intuitive insight. Assume there is a uniform B, field along the 0 = 0 direction 
in the cylinder. Consider the closed loop made up of two straight segments located 
at +0 and -0, respectively, and connected by portions of each end ring. The net 
flux through this closed loop and the associated inductive voltage developed in it 
are proportional to 2 sin 0. Since the capacitive voltage drops due to the current 
in the wires at +B and -6’ cancel the inductive voltage at resonance, the current in 
the wire at 0 must be proportional to sin 0. This is the current distribution required 
to produce the assumed uniform field B, . The N segment birdcage may be thought 
of as N/2 such closed loops wired in parallel. Hence the net effective inductance of 
the cage is lower than a saddle coil with only two parallel turns. The more evenly 
distributed currents in the birdcage do not produce the high magnetic energy 
densities found near the conductors in the saddle coil. The nonuniform field near 
the edges of the saddle coil means less magnetic energy is stored inside the sample 
volume; hence, a saddle coil will have a poorer filling factor than a birdcage 
resonator. Likewise, the multiple parallel paths of the birdcage reduce the resistive 
losses compared to those of a saddle coil. 

Using the Biot-Savart law, the rf field strength B1 can be calculated for a saddle 
coil and birdcage resonator made from small diameter wire. Figure 3a shows a 
contour plot of rf field strength produced in the transverse midplane of a saddle 
coil. Figure 3b shows the analogous plot for a birdcage coil containing 16 wires. 
Figures 3c and d show images of a 240 mm diameter water phantom in a 270 mm 
diameter saddle coil and in a 285 mm diameter 16-wire birdcage resonator, 
respectively. The coils were oriented to produce a vertical BI field instead of the 
horizontal field computed in Figs. 3a and b. The smaller relative diameter of the 
saddle coil adds somewhat to the observed inhomogeneity. The alternating regions 
of high- and low-field strength extend into the sample volume for distances 
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comparable to the separation between the wires. Hence by increasing the number 
of conductors in the birdcage, the ripples in the field strength can be reduced nearly 
to zero. The number of wires is limited only by the need for the cylindrical surface 
to remain transparent to the rf flux. 

The chief cause of Br inhomogeneity in the birdcage configuration is the 
unavoidable roll-off of field intensity at the ends of the coil. A long coil produces 
more uniform sensitivity for coronal and sagittal imaging. A short coil is more 
favorable for axial imaging because it picks up less noise from portions of the body 
outside the imaging plane. Hence a trade-off is required when choosing the coil 
length. 

The SNR performance of the birdcage resonator is consistent with the treatment 
of imaging sensitivity by Hoult and Lauterbur (I). They considered three types of 
losses which could contribute noise, namely, the resistance of the coil, the magnetically 
induced eddy current losses in the sample, and the dielectric or conductive losses 
due to stray electric fields in the sample. Determining the individual contributions 
of the two sample loss mechanisms is not trivial. Putting a one gallon phantom 
tilled with distilled water into a head coil tends to lower the resonant frequency 
without significantly lowering the coil quality factor Q. The high dielectric constant 
of water increases the effective stray capacitance. Adding about 0.2 wt% of NaCl to 
the phantom reduces the coil’s Q approximately the same amount as a human 
head. The coil’s resonant frequency is shifted less by the saline solution than the 
distilled water. We believe the magnetically induced sample currents reduce the 
effective inductance of the coil. The sample losses, however, could be due to rf 
electric or magnetic fields. In similar experiments with surface coils and lossy 
phantoms, we were able to vary the stray electric fields (as evidenced by the resonant 
frequency shifts) without varying the rf magnetic fields. No significant sample losses 
could be attributed to electric fields at 64 MHz in the surface coils. We assume 
that, from the frequency shifts observed in our head and body coils, electric-field- 
induced losses are small for these coils also. Hoult and Lauterbur pointed out that 
magnetically induced sample losses could (and should) become the dominant noise 
source for high-field clinical imaging. Their expression for the SNR for a spherical 
phantom of radius b with electrical conductivity B is 

SNR oc W2B, LL?B, 
K 

rcoil + rsample act?‘2 + j!3002B:b5 

where B1 is the rf field produced by the coil per unit current. The two terms in the 
denominator are proportional to two resistors: the first, Ycoii, is the coil resistance 
with a frequency dependence due to the skin effect; the second, rsmpl,, is an 
equivalent series resistor due to the induced eddy current losses in the conductive 
sample. The sample losses increase rapidly with frequency and sample size. We 
have produced coils in which sample losses have significantly exceeded coil losses 
for fields above 0.3 T. In the high-field limit, where rsample 9 Ycoii, Eq. [2] reduces to 

SNRa$. 
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FIG. 3. Computed contour plots of constant rf field magnitude for the transverse midplane of a saddle 

coil (a) and a birdcage resonator (b). Images of a 240 mm diameter water-filled phantom in a saddle coil 
(c) and a birdcage resonator (d). 

Note that the parameter B1, which depends on coil geometry, has dropped out. 
Hence, the difference in value for BI in solenoids and saddle coils, as described by 
Hoult and Richards (3), is unimportant for high-field imaging. Also note that SNR, 
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FIG. 3-Continued 

which refers to a fixed voxel size, decreases as the volume of lossy sample material 
increases. 

The relative values of Ycoir and rmmple can be determined by measuring the coil 
quality factor, Q, when the coil is empty and when it is loaded by the patient. The 
best indicator of coil sensitivity is the ratio 

Q empty -= rcoil + rsample 
Q loaded rcoil 

provided electric field losses do not contribute to rsample. For our coils, this ratio is 
typically greater than five. This implies that the rf coil losses contribute less than 
11% of the observed noise voltage. Hence further increases in empty coil Q or B, 
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will have diminishingly small effects on the signal-to-noise ratio. Roeschman (5) 
indicates his Q ratio ranged from 2 to 3.3. 

When the birdcage coil is constructed with fourfold symmetry, the desired 
homogeneous resonance will be doubly degenerate. The two modes are spatially 
and electrically orthogonal. Quadrature excitation of the two modes with currents 
of equal magnitude but with phases differing by 90” produces a circularly polarized 
rf field. The power required for a given nuclear flip angle with a circularly polarized 
field is one-half that required with a linearly polarized field (2). Similarly, each of 
the two orthogonal modes can be used to receive the resulting nuclear signal and 
accompanying noise voltage. Combining the two channels after one has been phase 
shifted 90” doubles the signal voltage. The noise voltage increases only by a factor 
of & because the two noise voltages are not correlated. Hence, quadrature reception 
enhances the SNR by a factor of &. 

When imaging large volumes of conductive medium at high fields with linear 
excitation and reception, rf field penetration effects tend to produce regions of 
enhanced and diminished signal strength as a function of 6. With quadrature 
excitation and reception, the dependence is averaged out to give a more uniform 
signal sensitivity. These effects have been discussed elsewhere (7). 
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