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There is great interest in estimating brain “networks” from FMRI data. This is often attempted by identifying a
set of functional “nodes” (e.g., spatial ROIs or ICA maps) and then conducting a connectivity analysis between
the nodes, based on the FMRI timeseries associated with the nodes. Analysis methods range from very simple
measures that consider just two nodes at a time (e.g., correlation between two nodes' timeseries) to
sophisticated approaches that consider all nodes simultaneously and estimate one global networkmodel (e.g.,
Bayes net models). Many different methods are being used in the literature, but almost none has been
carefully validated or compared for use on FMRI timeseries data. In this work we generate rich, realistic
simulated FMRI data for a wide range of underlying networks, experimental protocols and problematic
confounds in the data, in order to compare different connectivity estimation approaches. Our results show
that in general correlation-based approaches can be quite successful, methods based on higher-order
statistics are less sensitive, and lag-based approaches perform very poorly. More specifically: there are several
methods that can give high sensitivity to network connection detection on good quality FMRI data, in particular,
partial correlation, regularised inverse covariance estimation and several Bayes net methods; however,
accurate estimation of connection directionality is more difficult to achieve, though Patel's τ can be reasonably
successful. With respect to the various confounds added to the data, the most striking result was that the use
of functionally inaccurate ROIs (when defining the network nodes and extracting their associated timeseries)
is extremely damaging to network estimation; hence, results derived from inappropriate ROI definition (such
as via structural atlases) should be regarded with great caution.
l rights reserved.
© 2010 Elsevier Inc. All rights reserved.
Introduction

Neuroimaging is used to studymany aspects of the brain's function
and structure; one area of rapidly increasing interest is themapping of
functional networks. Suchmapping typically starts by identifying a set
of functional “nodes”, and then attempts to estimate the set of
connections or “edges” between these nodes. In some cases, the
directionality of these connections is estimated, in an attempt to show
how information flows through the network.

There are many ways to define network nodes. In the case of
electrophysiological data, the simplest approach is to either consider each
recorded channel as a node, or instead use spatial sources after source
reconstruction (spatial localisation) has been carried out. In the case of
FMRI, nodes are often defined as spatial regions of interest (ROIs), for
example, as obtained frombrain atlases or from functional localiser tasks.
Alternatively, independent component analysis (ICA) canbe run todefine
independent components (spatial maps and associated timecourses),
which can be considered network nodes, although the extent to which
this makes sense depends on the number of components extracted (the
ICA dimensionality). If a low number of components is estimated
(Kiviniemi et al., 2003), then it makes more sense to think of each
component itself as a network. This will often include several non-
contiguous regions, all having the same timecourse according to the ICA
model, and hence within-component network analysis is not possible
without further processing, such as splitting the components and re-
estimating each resulting node's timeseries. Furthermore, between-
component network analysis is quite possibly not reasonable, as each
component will in itself constitute a gross, complex functional system.
However, if a higher numberof components is estimated (Kiviniemi et al.,
2009), these are more likely to be smaller, isolated regions (functional
parcels), which canmore sensibly be then considered as nodes for use in
network analysis.

Once the nodes are defined, each has its own associated time-
course. These are then used to estimate the connections between
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1 Although this neural model does not include neural lags as an explicit distinct
process, the effect of the within-node dynamics (exponential temporal decay) is to
create a lag between the input and output of every node. We verified this by
generating a simple network of 4 nodes, with A→B→C→D, and a single impulse input
applied into A. Each node's output neural timeseries was indeed a blurred and delayed
version of the previous node, with the delay controlled directly by σ. We also tested
whether replacing the neural and haemodynamic forward model with simple shifts
and linear HRF convolutions affected any of our final results, and found no significant
differences. Finally, we tested that the neural lags were as expected by confirming that
Granger causality, applied to the neural timeseries, gave correct network edge
directions.
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nodes—in general, the more similar the timecourses are between any
given pair of nodes, the more likely it is that there is a functional
connection between those nodes. Of course, correlation (between two
timeseries) does not necessarily imply either causality (in itself it tells
one nothing about the direction of information flow), or whether the
functional connection between two nodes is direct (there may be a
third node “in-between” the two under consideration, or a third node
may be feeding into the two, without a direct connection existing
between them). This distinction between apparent correlation and
true, direct functional connection (sometimes referred to as the
distinction between functional and effective connectivity respectively;
Friston, 1994) is very important if one cares about correctly
estimating the network. For example, in a 3-node network where
A→B→C, and with external inputs (or at least added noise that feeds
around the network) for all nodes, then all three nodes' timeseries
will be correlated with each other, so the “network estimation
method” of simple correlation will incorrectly estimate a triangular
network. However, another simple estimation method, partial
correlation, can correctly estimate the true network; this works by
taking each pair of timeseries in turn, and regressing out the third
from each of the two timeseries in question, before estimating the
correlation between the two. If B is regressed out of A and C, there will
no longer be any correlation between A and C, and hence the spurious
third edge of the network (A–C) is correctly eliminated.

The question of directionality is also often of interest, but in general
is harder to estimate than whether a connection exists or not. For
example, many methods, such as the two mentioned above (full
correlation and partial correlation) give no directional information at
all. The methods that do attempt to estimate directionality fall into
three general classes. The first class is “lag-based”, the most common
example being Granger causality (Granger, 1969). Here it is assumed
that if one timeseries looks like a time-shifted version of the other,
then the one with temporal precedence caused the other, giving an
estimation of connection directionality. The second class is based on
the idea of conditional independence, and generally starts by
estimating the (zero-lag) covariance matrix between all nodes'
timeseries (hence such methods are based on the same raw measure
of connectivity as correlation-based approaches—but attempt to go
further in utilising this matrix to drawmore complex inferences about
the network). Such methods may look at the probability of pairs of
variables conditional on sets of other variables; for example, Bayes net
methods (Ramsey et al., 2010) in general estimate directionality by
first orienting “unshielded colliders” (paths of the form A→B←C) and
then drawing inferences based on algorithm-specific assumptions
regardingwhat further orientations are implied by these colliders. The
third class of methods utilises higher order statistics than just the
covariance; for example, Patel's pairwise conditional probability
approach (Patel et al., 2006) looks at the probability of A given B,
and B given A, with asymmetry in these probabilities being
interpreted as indicating causality.

A large number of network estimation methods have been used in
the neuroimaging literature, with varying degrees of validation. The
closer a given modality's data is to the underlying neural sources, the
simpler it is to interpret the data and analyses resulting from it. In the
case of FMRI, the data is a relatively indirect measure of the neural
activity, being distanced from the underlying sources by many
confounding stages, particularly the nonlinear neuro-vascular cou-
pling that adds (generally unknown amounts of) significant blurring
and delay to the neural signal (Buxton et al., 1998). This means that
very careful validation is necessary before network estimation
methods applied to FMRI data can be safely interpreted, and,
unfortunately, it is too often the case that careful, sufficiently rich,
validation is not carried out before real data is analysed and
interpreted. Several approaches have been applied to electrophysio-
logical data, and have beenwell validated for that application domain;
however, because FMRI data is so much further removed from the
underlying sources of interest than is generally the case with the
various electrophysiological modalities, FMRI-specific validations are
of particular importance. We concentrate solely on FMRI data in this
paper. We simulate resting FMRI data, although the results will also in
general be relevant for task FMRI (in fact, the input timings generated
in the simulations could equally be viewed as simulating an event-
related task FMRI experiment).

The purpose of this work is to apply a rich biophysical FMRI model
to a range of network scenarios, in order to provide a thorough
simulation-based evaluation of many different network estimation
methods. We have compared their relative sensitivities to finding the
presence of a direct network connection, their ability to correctly
estimate the direction of the connection, and their robustness against
various problems that can arise in real data. We find that some of the
methods in common use are not effective approaches, and even can
easily give erroneous results.

Methods: Simulations

Networks of varied complexity were used to simulate rich, realistic
BOLD timeseries. The simulations were based upon the dynamic
causal modelling (DCM; Friston et al., 2003) FMRI forward model,
which uses the nonlinear balloon model (Buxton et al., 1998) for the
vascular dynamics, sitting on top of a neural network model. We now
describe in detail how our simulations were generated. Specific
simulation parameters given are true in general for most of the
evaluations, except where particular evaluations change one param-
eter in order to investigate its effect on network estimability—for
example, in one particular evaluation the haemodynamic lag
variability was removed.

Each node has an external input that is binary (“up” or “down”)
and generated based on a Poisson process that controls the likelihood
of switching state. Neural noise/variability of standard deviation 1/20
of the difference in height between the two states is added. The mean
durations of the states were 2.5 s (up) and 10 s (down), with the
asymmetry representing longer average “rest” than “firing” durations;
the final results did not depend strongly on these choices (for
example, reducing these durations by a factor of 3 made almost no
difference to the final results). These external inputs into each node
can be viewed equivalently as either a signal feeding directly into each
node, or as noise appearing at the neural level.

The neural signals propagate around the network using the DCM
neural network model, as defined by the A network matrix:

ż = σAz + Cu ð1Þ

where z is the neural timeseries, ż is its rate of change, u are the
external inputs and C the weights controlling how the external inputs
feed into the network (often just the identity matrix). The off-
diagonal terms in A determine the network connections between
nodes, and the diagonal elements are all set to -1, to model within-
node temporal decay; thus σ controls both the within-node (neural)
temporal inertia/smoothing and the neural lag between nodes.1 The
original DCM forward model includes a prior on σ that results in a
mean 1 s lag between neural timeseries from directly connected
nodes; this unrealistically long lag was originally coded into DCM for
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Fig. 1. Example simulated neural and FMRI BOLD timeseries, for a simple 2-node network, where node 1 feeds into node 2 with strength 0.4, and both nodes have random external
inputs as described in the main text. The y-axis units are arbitrary. Blue shows the neural/BOLD data at node 1, and orange shows node 2.
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practical algorithmic purposes in the Bayesian modelling. Although
this is not a problem when DCM is applied to real data (as the data
overwhelms this weak prior), it produces unrealistic lags in a
simulation based on this model. Hence we changed this to a more
realistic time constant, resulting in a mean neural lag of approx-
imately 50 ms. This is chosen to be towards the upper end of the
majority of neural lags generally seen,2 in order to evaluate lag-based
methods in a best-case scenario, while remaining realistic. (The
reason for not also testing the lag-based methods with lower, more
realistic neural lags is that, as seen below, even with a relatively long
lag of 50 ms, performance of these methods is poor.)

Each node's neural timeseries was then fed through the nonlinear
balloon model for vascular dynamics responding to changing neural
demand. The amplitude of the neural timeseries were set so that the
amount of nonlinearity (nonlinearity here being potentially with
respect both to changing neural amplitude and duration) matched
what is seen in typical 3 T FMRI data, and BOLD % signal change
amplitudes of approximately 4% resulted (relative to mean intensity
of simulated timecourses). The balloon model parameters were in
general set according to the priormeans in DCM. However, it is known
that the haemodynamic processes vary across brain areas and
subjects, resulting in different lags between the neural processes
and the BOLD data, with variations of up to at least 1 s (Handwerker
et al., 2004; Chang et al., 2008). We therefore added randomness into
the balloon model parameters at each node, resulting in variations in
HRF (haemodynamic response function) delay of standard deviation
0.5 s. This is towards the lower end of the variability reported in the
literature, in order to evaluate lag-based methods in a best-case
scenario while remaining reasonably realistic. Finally, thermal white
noise of standard deviation 0.1–1% (of mean signal level) was added.
2 de Pasquale et al. (2010) note that intrahemispheric delays are typically 5–10 ms,
while Ringo et al. (1994) note that unmyelinated interhemispheric fibres can result in
delays of up to 300 ms, but in many long fibres are between 5 and 35 ms. Event-
related potentials are often reported as being a few hundred milliseconds, but this is
generally the delay between external stimulation and the response generated by a
higher cognitive area; hence, this period will typically have involved communication
between several distinct functional units, and is unlikely to reflect a single network
“connection” that is of interest for investigation with imaging-based network
modelling.
The BOLD data was sampled with a TR of 3 s (reduced to 0.25 s in a
few simulations), and the simulations comprised 50 separate
realisations (or “subjects”), all using the same simulation parameters,
except for having randomly different external input timeseries,
randomly different HRF parameters at each node (as described
above) and (slightly) randomly different connection strengths as
described below. Each “subject's” data was a 10-min FMRI session
(200 timepoints) in most of the simulations. Example simulated
neural and FMRI BOLD timeseries can be seen in Fig. 1, for a simple 2-
node network, where node 1 feeds into node 2 with strength 0.4, and
both nodes have external inputs as described above.

The main network topologies are shown in Fig. 2. The first
network, S5, was 5 nodes in a ring (though not with cyclic causality—
see arrows within the figure), with one independent external input
per node, and connection strengths set randomly to have mean 0.4,
standard deviation 0.1 (with maximum range limited to 0.2:0.6). S10
took two networks like S5, connected via one link only (a simple
“small-world” network). S50 used 10 sub-networks, again with
“small-world” topology. Each N-node network can also be repre-
sented as an N×N connection matrix (see examples in Fig. 2), where
each element (i,j) determines the presence of a connection from node
i to node j, and directed connections are represented by asymmetry in
the elements—if (i,j) is nonzero and (j,i) is zero, then there is
directionality from node i to node j.

Our evaluations looked at the distribution of estimated network
results over the 50 simulated subjects, to estimate false-positive and
false-negative rates for the various methods tested. Some aspects of
our simulation framework are similar to that used to evaluate the
“greedy equivalence search” (GES) network modelling method in
Ramsey et al. (2010). One difference is that, whereas Ramsey et al.
(2010) developed and tested methodology for explicit cross-subject
network modelling, we concentrate here on evaluating network
modelling methods for single subject (single session) datasets, and
only utilise multiple subjects' datasets in order to characterise
variability of results across multiple random instantiations of the
same underlying network simulation. There is also a similar approach
to simulated data generation inWitt andMeyerand (2009), where the
DCM forward model is used to generate a simple 3 node network,
with evaluation of DCM, structural equation modelling and autore-
gressive modelling (including Granger causality). In Marrelec et al.



Fig. 2. The main network topologies fed into the FMRI data simulations. For each network graph the corresponding connection matrix is shown, where an element in the upper
diagonal of the matrix implies a directed connection from a lower-numbered node to a higher-numbered one.
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(2009) there is another somewhat similar simulation of BOLD
timeseries, using a large-scale neural model of seven network nodes
under different task conditions, followed by linear haemodynamic
convolution; this is used to investigate the performance of partial
correlation, and compare against structural equation modelling.

Methods: Network modelling methods tested

We now give a brief description of each of the methods tested.
Where minor variants of each main method (including alternative
choices in controlling parameters) performed universally worse than
other variants, we exclude the unsuccessful variants from further
consideration in the paper, in order to maximise the clarity of
presentation. We describe all variants tested (including descriptions
of those that were rejected) within this section.

Not tested: DCM and SEM

There are two major network modelling approaches which we
have not included in this paper—dynamic causal modelling (DCM;
Friston et al., 2003) and structural equation modelling (SEM; Wright,
1920; McIntosh and Gonzales-Lima, 1994). The primary reason for the
exclusion of both methods is mathematical and computational
feasibility—neither method is able to effectively search across the
full range of possible network topologies, as well as both being
mathematically poorly conditioned when attempting to fit the most
general (unconstrained) network model to data. In general, both
approaches need (at most) a few potential networks to be
hypothesised and compared with their respective modelling
approaches, though see Freenor and Glymour (2010) for early work
on searching over DCM models.

The second reason why DCM is not appropriate here is that we are
interested in modelling resting as well as task FMRI data. While there
is some early work on stochastic DCMs that may be able to address
this (Daunizeau et al., 2009), established DCM methods require that
the “input” timings be specified in advance—something that is clearly
not known for resting data.

Correlation and Partial correlation

The simplest measure of pairwise similarity between two time-
series is covariance. If the timeseries are normalised to unit variance
this measure becomes (normalised) correlation, which we will refer
to as Full correlation, to distinguish this from partial correlation.

We also evaluated full correlation, applied after bandpass filtering
all timeseries data, to investigate if certain BOLD frequency bands
contain more useful information for connectivity modelling. We did
this because both the signal and the noise are potentially frequency-
dependent (for example, the haemodynamics reduce the power in the
signal at the highest frequencies). We first filtered the data keeping
the lower and (separately) upper halves of the full frequency range,
and also filtered the data into eight bands, each covering 1/8th of the
full frequency range. Results from most frequency bands performed
less well than using the unfiltered data, with network connection
sensitivity becoming increasingly poorer at higher frequencies. The
two frequency bands that did show some interesting results were the
bottom-half of the range (bandpass1/2) and the second-lowest of the
eight frequency bands (bandpass2/8).

Partial correlation refers to the normalised correlation between
two timeseries, after each has been adjusted by regressing out all
other timeseries in the data (all other network nodes). One attractive
feature of doing this is that it attempts to distinguish direct from
indirect connections, as discussed above. Partial correlation has been
advocated (e.g., Marrelec et al., 2006, where light regularisation of the
partial correlation matrix is applied using an uninformative prior), as
being a good surrogate for SEM, which makes sense if one thinks of
SEM as being a multiple regression where the data is related to itself
via a network matrix, the link being that parameter estimation in a
multiple regression framework is always driven by the unique
(orthogonal) components of any given regressor within the model.
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Regularised inverse covariance

An efficient way to estimate the full set of partial correlations is via
the inverse of the covariance matrix (Marrelec et al., 2006). Under the
constraint that this matrix is expected to be sparse, regularisation can
be applied, for example, using the Lassomethod (Banerjee et al., 2006;
Friedman et al., 2008). This shrinks entries that are close to zero more
than those that are not, and can be useful in the context of Bayes nets/
graphical models. For example, this method (which we refer to as
ICOV: Inverse COVariance) is expected to be useful when there are a
limited number of observations at each node, such as with shorter
FMRI scanning sessions.

If we consider a continuum of methods, with one extreme being
pure pairwise methods (e.g., full correlation) and the other extreme
global network modelling approaches (e.g., Bayes nets), then partial
correlation (which uses all nodes' data in its calculations) sits
somewhere in the middle, with ICOV also being intermediate, but a
little closer to the more global modelling extreme. SEM could be
thought of as being one option at the global modelling extreme, where
more sophisticated/explicit modelling allows (under certain model
assumptions) the estimation of model aspects such as the involve-
ment of “latent variables” (external inputs which are not directly
measured, but inferred from the viewed data).

We use an implementation of ICOV referred to as L1precision
(www.cs.ubc.ca/~schmidtm/Software/L1precision.html), which
requires the setting of the regularisation-controlling parameter λ.
We tested a range of λ values: 5, 10, 20, 50, 100, and 200 (higher λ
gives greater regularisation).3 Final results showed that values of 10,
20, 50, and 200 never gave the best results, and so were discarded,
keeping the values of 5 and 100. We also tested the value of 0 (no
regularisation), to confirm that this gave the same results as partial
correlation, which indeed was the case, and hence this was not
reported on below.

Mutual information

Mutual information (MI) (Shannon, 1948) quantifies the shared
information between two variables, and can reflect both linear and
nonlinear dependencies. It is calculated by comparing the individual
and joint histograms, and is high when one variable predicts
characteristics of the other. AsMI is sensitive to higher order statistics
than is correlation (which only considers second order), this measure
may be able to detect some forms of network connectivity that
correlation cannot.

We used the implementation in the Functional Connectivity
Toolbox (Zhou et al., 2009) (groups.google.com/group/fc-toolbox).
As well as estimating mutual information, we also estimated Partial
MI, for each pair of timecourses after all other timecourses in a given
dataset were regressed out of the pair of interest.

Granger causality and related lag-based measures

Granger causality (Granger, 1969) defines a statistical interpreta-
tion of causality in which A is said to cause B if knowing the past of A
can help predict B better than knowing the past of B alone. This is
implemented using multivariate vector autoregressive modelling
(MVAR). Early use of Granger causality for neuroimaging data can
be found in Goebel et al. (2003) and Roebroeck et al. (2005). There has
been some criticism of this approach (e.g., Friston, 2009), in part due
to the lack of a biologically based generative model, but also with
specific problems raised such as the likelihood of spurious estimated
3 The L1precision code does not enforce scale invariance for the covariance vs. λ; hence
we utilised the following call to this code, in order to normalise the overall scaling of the
covariance, and adjust λ accordingly. Use of this call allows the reader to interpret the λ
values quoted here correctly: icov=L1precisionBCD(cov(X)/mean(diag(cov(X))), λ/1000)
“causality” being in fact caused by systematic differences across brain
regions in haemodynamic lag (this being a problem for FMRI, but not
in general for more direct electrophysiological modalities).

We tested four implementations of Granger causality. For the first,
we used the “Causal Connectivity Analysis” toolbox (Seth, 2010)
(www.anilseth.com). This implements “conditional” Granger causal-
ity (Geweke, 1984), where “one variable causes a second variable if
the prediction error variance of the first is reduced after including the
second variable in the model, with all other variables included in both
cases” (Guo et al., 2008). As this requires the specification of the
“model order” (number of recent timepoints to include in the
autoregressive model) we tested (separately) the use of 1, 2, 3, 10
and 20 previous observations. These results are referred to below as
Granger Anwhere n is the model order. The toolbox also allows for the
estimation of “partial” Granger causality (Guo et al., 2008), which
attempts to further reduce the deleterious effects of latent (unre-
corded) confounding processes by making greater utilisation of the
off-diagonal covariance matrix terms than the “conditional” approach
does.

The second implementation that we tested was pairwise
Granger causality estimation, using the Bayesian Information
Criterion to estimate the model order, up to a specified maximum
(www.mathworks.co.kr/matlabcentral/fileexchange/25467-granger-
causality-test). We again set the maximum lags considered to 1, 2, 3,
10 and 20 (though in this case, the model order chosen by the use of
BIC may well be less than the maximum allowed). This set of tests is
referred to as Granger Bn.

The third and fourth implementations that we tested were from
the BioSig toolbox (biosig.sourceforge.net): DC (“directed Granger
causality”) and GGC (“Geweke's Granger causality”). We tested the
same range of maximumMVARmodel orders as listed above, and also
did this with the other lag-based methods from BioSig mentioned
below. GGC can be restricted to be applied to frequencies of interest in
the data; we found that the highest frequencies gave the best results
and so report just a single set of results (for each MVARmodel order),
taken from the top end of the data frequencies.

The default Granger measure of causality for A causing B is an F-
statistic FAB, and the measure for the reverse causality is FBA. In
Roebroeck et al. (2005) it is suggested that a more robust variant of
the Granger causality measure for A causing B is to subtract the two
measures, i.e., use FAB−FBA. We therefore tested this “causality-
difference” measure for all of the above Granger evaluations, in
addition to the raw direction measures. (In our directionality
evaluations we did in any case subtract the two directions' estimates
for all measures, rendering this unnecessary for those tests, but that
does not fully remove the value of adding in the above difference
measures, to allow connection strength to be evaluated separately for
non-differenced and differenced Granger measures.)

We also tested Partial directed coherence (PDC), which measures
the “relationships (direction of information flow) between multivar-
iate time series based on the decomposition of multivariate partial
coherences computed frommultivariate autoregressivemodels…[this
reflects] a frequency-domain representation of the concept of Granger
causality” (Baccalá and Sameshima, 2001). We used the implemen-
tation of PDC in the BioSig toolbox. PDC is a function of the frequencies
(in the data) that are investigated; we found that all frequencies
except the very highest gave identical results, and so only report one
set of results (for each MVAR model order) for PDC.

Directed transfer function (DTF) is another frequency-domain
method that “describes propagation between channels furnishing at
the same time information about their directions and spectral
characteristics. It makes possible the identification of situations
where different frequency components are propagating differently”
(Kamiński et al., 1997). We used the implementation in BioSig. As
with PDC, DTF is a function of the frequencies investigated in the data;
again we found the results almost identical across frequencies, with a
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slight preference for the higher frequencies, and hence only report
one set of results (for eachMVARmodel order) for DTF.We also tested
a “modified version” of DTF implemented in BioSig (“ffDTF”), but this
gave the same results as DTF, so we do not report further on this
method.

All of the BioSig-based measures gave equivalent or better results
when run pairwise, compared with feeding in the entire sets of all
nodes' timeseries; hence we only report the pairwise results below.

An extra pre-processing option for lag-based methodologies is to
detrend, demean and normalise to unit temporal standard deviation
all timecourses before passing them into causality estimation. We
repeated all of the above tests with such pre-processing included, but
found that this made no appreciable difference to any results, and so
discarded those evaluations from further consideration.

From all of the Granger evaluations, using the “causality-
difference” measures were never better than the raw directional
measures, although in many cases they were very similar. We
therefore do not report these further. From the Granger A tests, we
found that the “partial” Granger causality evaluations were always
similar to or worse than the “conditional” measures, so we do not
present those in our detailed results below. The 2 and 10 model order
evaluations for Granger A were discarded as they did not perform as
well as the other choices. In the Granger B tests, all results were
identical across different maximum model orders, implying that the
BIC was always dictating a model order of 1; we thus discarded all
higher-order tests. For GGC we kept model orders 1 and 10, as the
othermodel orders never performed as well. All data frequencies from
0.01 to 0.1 Hz were similar, with 0.01 Hz performing slightly better,
and so we kept only the GGC results from 0.01 Hz filtering. For DC, we
discardedmodel orders of 1 and 20, as these did not perform aswell as
orders 2, 3, and 10. For PDC we discarded model orders of 2 and 20,
and for DTF, we discarded 1, 2 and 20, in both cases because they
never performed as well as other model orders.
Coherence

Two signals are said to be coherent if they have constant relative
phase, or, equivalently, if their power spectra correlate, for a given
time and/or frequency window. This measure is therefore insensitive
to a fixed lag between two timeseries. Coherence is typically either
estimated for a single (often narrow) frequency range, or estimated
within multiple frequency ranges, with the multiple results then
combined with each other.

We tested two implementations of coherence. For the first we used
wavelet transform coherence from the Crosswavelet and Wavelet
Coherence Matlab toolbox (Grinsted et al., 2004) (www.pol.ac.uk/
home/research/waveletcoherence). This allows the estimation of
coherence between two signals as a function of both time and
frequency, and was used recently in Chang and Glover (2010) to
investigate nonstationary effects in resting FMRI data. Continuous
wavelet transforms are used to estimate phase-locked behaviour in
two timeseries, and we average our different coherence measures
over all estimated time windows. We estimate mean (over time)
coherence for 0.15 Hz (close to the highest possible frequency),
0.017 Hz (close to the lowest), average over all frequencies, average
over 25–50% of the frequency range, and average over the lower half
of the frequency range; these are referred to as Coherence A1 to A5
respectively. For measures 3–5 we also estimated the 95th percentile
(across the entire set of values from all times and frequencies within
the ranges described) instead of the mean. We did this in the hope
that we might show increased sensitivity to nonstationarities in the
BOLD data (in the simulation where we generated nonstationary
correlations); however Coherence A3 (mean over all frequencies)
always performed better than the other options, so the rest were
discarded.
The second implementation of coherence that we used was that
provided in the Functional Connectivity Toolbox mentioned above.
This estimates the normalised cross-spectral density at a range of
frequencies (up to Nyquist). We tested the same set of frequencies
and frequency ranges as above, though we do not have separate
measurements at separate timepoints (as we set the time window for
spectral estimation to be equal to the timeseries length); these are
referred to as Coherence B1–5. Coherence B3 (mean over all
frequencies) always performed better than the other options, so the
rest were discarded.

Generalised synchronisation

Generalised (or nonlinear) synchronisation “evaluates synchrony
by analysing the interdependence between the signals in a state space
reconstructed domain” (Dauwels et al., 2010). We used the
implementation available at www.vis.caltech.edu/~rodri/programs/
synchro.m, which provides three related measures of nonlinear
interdependence utilising generalised synchronisation; for detailed
descriptions of these measures and the differences between them, see
Quian Quiroga et al. (2002) and Pereda et al. (2005). These are
referred to in our results as Gen Synch S/H/N. We found thatmethodsH
and N always gave very similar results, so we just report H below.

The three primary measures generated by the generalised
synchronisation code are directional. In Quian Quiroga et al. (2002)
there is discussion of the interpretability of asymmetries in these
directional measures. It is stated that the “asymmetry can give
information about driver-response relationships, but can also reflect
the different dynamical properties of the data”, and indeed, we did
often find that the direction of the asymmetry was not consistent
across the three tested synchronisation measures.

We used the default parameters of embedding dimension=10,
number of nearest neighbours=10, Theiler correction=50. We
tested the effects of doubling and halving each of these parameters;
this caused either unchanged or worse network estimation perfor-
mance, so we left these default values unchanged. With respect to the
time lag parameter, we tested both the default of 2, and also tested
time lag=1 (hence the numbers 2 and 1 in our results below).

Because the three measures are directional, we also averaged both
directions' measures as a further test of connection strength, but this
did not improve any results, and so is not reported on further. Finally,
we also estimated Gen Synch measures for each pair of timecourses
after all other timecourses in a given dataset were regressed out of the
pair of interest, but this did not improve results, so we do not report
further on those tests.

Patel's conditional dependence measures

The conditional dependence proposed in Patel et al. (2006) simply
looks at an imbalance between P(x|y) and P(y|x), to arrive at a
measure of connectivity/causality. This makes most sense (as a data
model) when applied to fundamentally binarised data, however it can
also be applied to continuous data. Here we mapped each timeseries
into the range 0:1, by limiting data under the 10th percentile to 0, and
data over the 90th percentile to 1, and linearly mapping data in
between to the range 0:1. We then calculate the conditional
dependencies directly from these “normalised” timeseries. There are
two measures that can be derived from the conditional dependences:
κ, a measure of connection strength, and τ, a measure of connection
directionality.

As well as the results based on the continuous data, we also
binarised the timeseries at a range of thresholds (0.25, 0.5, 0.75, 0.9)
after mapping the data into the range 0:1 as discussed above. Each of
these resulted in a separate evaluation. We found that binarisation at
0.25, 0.5 and 0.9 always performed worse or equal to binarisation at
0.75 or no binarisation, so these results were discarded.

http://www.pol.ac.uk/home/research/waveletcoherence
http://www.pol.ac.uk/home/research/waveletcoherence
http://www.vis.caltech.edu/~rodri/programs/synchro.m
http://www.vis.caltech.edu/~rodri/programs/synchro.m


Table 1
Summary of the 28 simulations' specifications.

Sim # nodes Session duration
(min)

TR
(s)

Noise
(%)

HRF std.
dev. (s)

Other factors

1 5 10 3.00 1.0 0.5
2 10 10 3.00 1.0 0.5
3 15 10 3.00 1.0 0.5
4 50 10 3.00 1.0 0.5
5 5 60 3.00 1.0 0.5
6 10 60 3.00 1.0 0.5
7 5 250 3.00 1.0 0.5
8 5 10 3.00 1.0 0.5 shared inputs
9 5 250 3.00 1.0 0.5 shared inputs
10 5 10 3.00 1.0 0.5 global mean confound
11 10 10 3.00 1.0 0.5 bad ROIs (timeseries

mixed with each other)
12 10 10 3.00 1.0 0.5 bad ROIs (new random

timeseries mixed in)
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Bayes net methods

A range of Bayes Net modelling algorithms are implemented in the
Tetrad IV toolbox (www.phil.cmu.edu/projects/tetrad/tetrad4.html).
We tested CCD, CPC, FCI, PC, and GES. PC (“Peter and Clark”; Meek,
1995) searches for causal graphs under the assumption that the true
causal model forms a directed acyclic graph (DAG), which entails that
there are no cycles and that all common causes of variables in the
graph are in the graph (causal sufficiency). PC uses an efficient search
for the graph's adjacencies, first computing unconditional indepen-
dencies, then independencies conditional on one variable, and so on,
with a specific set of rules for determining orientation. CPC
(Conservative PC; Ramsey et al., 2006) uses a similar adjacency
search to PC, though more conservative, limiting the number of false
orientations. GES (Greedy Equivalence Search; Chickering, 2003;
Ramsey et al., 2010) is a score-based search under the same
assumptions as PC. It works by adding edges that most improve the
score until no more edges can be added, then removing edges whose
removal most improves the score, until no more edges can be
removed, using the BIC (Bayesian Information Criterion) cost
function. FCI (Fast Causal Inference; Zhang, 2008), unlike PC, CPC,
and GES, allows for the existence of latent (or unmeasured) variables,
producing a more complicated output. CCD (Cyclic Causal Discovery;
Richardson and Spirtes, 2001), unlike PC, CPC, or GES, allows for the
existence of cycles, also producing a more complicated output.

There is a very slight edge-direction bias in the CCD implemen-
tation that tends to direct connections from lower-numbered nodes to
higher-numbered, rather than vice versa (the node “numbering”
simply referring to the order in which timeseries are input to the
algorithm). This slight bias only becomes apparent when the data
does not support directionality strongly, and when combining results
across a large number of tests. We eliminated the bias by randomising
the node ordering when feeding test data into the Bayes net methods,
and then undoing this reordering upon reading the results back in.

These global network modelling approaches output binarised
network matrices, which may contain connection direction informa-
tion, but generally not strength. The sensitivity of each method is
determined by a single controlling input parameter for each method.
However, in order to be able to test these methods within the same
evaluation framework as all other methods, we ideally wanted to
assign different connection strengths to different network edges in
the output network matrices. To achieve this, we ran each method
with approximately 100 different specificity settings (logarithmically
spaced), and assigned the estimated strength of each connection to be
the (−log of the) most conservative specificity (input parameter) that
resulted in that element being reported as a connection. In other
words, if a network edge is only reported when the modelling is run
with a high-sensitivity, low-specificity (i.e., liberal) controlling
parameter, that network edge is assigned a relatively low connection
strength, and vice versa.
13 5 10 3.00 1.0 0.5 backwards connections
14 5 10 3.00 1.0 0.5 cyclic connections
15 5 10 3.00 0.1 0.5 stronger connections
16 5 10 3.00 1.0 0.5 more connections
17 10 10 3.00 0.1 0.5
18 5 10 3.00 1.0 0.0
19 5 10 0.25 0.1 0.5 neural lag=100 ms
20 5 10 0.25 0.1 0.0 neural lag=100 ms
21 5 10 3.00 1.0 0.5 2-group test
22 5 10 3.00 0.1 0.5 nonstationary

connection strengths
23 5 10 3.00 0.1 0.5 stationary connection

strengths
24 5 10 3.00 0.1 0.5 only one strong

external input
25 5 5 3.00 1.0 0.5
26 5 2.5 3.00 1.0 0.5
27 5 2.5 3.00 0.1 0.5
28 5 5 3.00 0.1 0.5
LiNGAM

The LiNGAM (Linear, Non-Gaussian, Acyclic causal Models)
algorithm is a global network model that is different from Bayes net
approaches in that it is not based directly on conditional indepen-
dences between nodes' timeseries (typically derived via the covari-
ancematrix), but utilises higher-order distributional statistics, via ICA,
to estimate the network connections (Shimizu et al., 2006). The
assumption is made that each viewed node has its own external input,
and that all external inputs have distinct, non-Gaussian, distributions.
Under this assumption, temporal ICA (applied to the full set of nodes'
timeseries) can be used to estimate the external inputs, and the ICA
“mixing matrix” can then be manipulated to estimate the network
connections.
We used the original implementation of LiNGAM available from
(www.cs.helsinki.fi/group/neuroinf/lingam) which includes FastICA.
We used default parameters, except for using symmetric decorrela-
tion and the “skew” nonlinearity. This latter option gave better results
than other ICA nonlinearities, probably because it is simpler and hence
able to function with more limited amounts of data. Because ICA
requires a large number of datapoints in the relevant dimension, and
LiNGAM uses temporal ICA, the limited number of timepoints in
typical BOLD data is a potential problem for LiNGAM.
Results

We begin by explaining how we summarised the outputs from
testing the different network modelling approaches. (For a summary
of the specifications for all 28 simulations see Table 1.) Results from
one of the most “typical” network scenarios (Sim2) are shown in
Fig. 3, which has 10 nodes, 10 min FMRI sessions for each subject,
TR=3 s, measurement noise (thermal noise added onto the BOLD
signal) of 1%, and HRF lag variability of ±0.5 s.

For some of these plots we use the raw connection strength values
as estimated by each network modelling method, and for others, we
have converted the connection strengths into Z scores, through the
use of an empirical null distribution. The latter is to make the plots
more qualitatively interpretable, as the connection strengths are then
more comparable across the different methods. The conversion from
raw connection strengths to Z scores (such as seen in row 1) is
achieved by utilising the null distribution of connection strengths; we
feed in truly null timeseries data into each of the modelling methods.
The null data was created by testing for connections between
timeseries from different subjects' datasets, which have no causal
connections between them (i.e., we randomly shuffled the subject

http://www.phil.cmu.edu/projects/tetrad/tetrad4.html
http://www.cs.helsinki.fi/group/neuroinf/lingam
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labels for each node in the network). We always generated null
datasets with the same number of nodes as being tested in a given
simulation, as this could affect the generation of the correct null
distribution for methods that consider all nodes simultaneously. The
cumulative density function of an analytical approximation to the
estimated null was then used to convert raw connection strengths
into Z scores.

The top row shows, for each modelling approach, the distribution
of estimated network Z score values, taken from the points in the
network matrix that are true connections. In the case of methods that
estimate directionality, we use the higher of the two directions'
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4 Our tests require running each Bayes net method many thousands of times, which
is why we had to exclude these from our 50-node testing; however, if only needing to
be run once (i.e., on real data), the Bayes net methods are in general usable,
completing on 50 nodes in less than an hour, and, judged qualitatively, performing
well.
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distribution of “false positive” (FP) values should ideally be non-
overlapping with the TP distribution, for successful methods. In the
top row the TP distribution is shown in black, with the FP distribution
shown in orange, for ease of comparison, and vice versa in row 2.

The fact that the FP values shown in row 2 are not all zero-mean
unit-standard-deviation (as one might expect from the fact that the
values have been all converted to Z scores using the null distribution
derived from truly null data) reflects the fact that the presence of true
connections will often induce increased false positive estimation
(indirect connections). For example, note that the FP distribution for
Full correlation is higher than that for Partial correlation, because the
latter takes steps to reduce the estimation of indirect (FP)
connections.

Row 3 combines the information from the top two rows—it shows
the fraction of true positives that are estimated with higher
connection strengths than the 95th percentile of the false positive
distribution. This is therefore a measure of the success in separating
the TP from the FP estimated connection strengths. The FP-based
threshold is estimated separately for each subject, and the number of
TP values above this counted, and then divided by the total number of
true connections. The violin-plot distributions are thus showing
variation across subjects. We do not need to use the Z scores here, but
use the raw values, for greater accuracy. The blue line plots the mean
of the distributions of TP fraction. As this value will be discussedmany
times in the following text, we shall refer to this mean fractional rate
of detecting true connections as “c-sensitivity”; this is the most
important, quantitative evaluation of how sensitive the different
methods are to estimating the presence of a network connection (as
opposed to its directionality).

The general story regarding c-sensitivity told by this particular
simulation is reasonably reflective of our simulations in general.
Partial correlation, ICOV and the Bayes net methods perform
excellently, with a c-sensitivity of more than 90%. Full correlation
and Patel's κ perform a little less well.MI, Coherence and Gen Synch are
significantly less sensitive, with a c-sensitivity of about 50%. The lag-
based methods (Granger, etc.) perform extremely poorly, with c-
sensitivity of under 20%. LiNGAM also performs poorly, as it requires a
larger number of timepoints to function well.

Row 4 presents results of the connection directionality estimation.
For each true connection (positive element in the true network
matrix), we took the estimated connection strength for that element
(i,j) and subtracted the corresponding estimated strength in the
reverse direction (j,i). The violin-plot distributions of subtracted-Z are
over all true connections and over all subjects. A distribution showing
a majority of positive values designates success in estimating
directionality (causality). The blue dots indicate the overall percent-
age of causality directions that are correct, with 50% being the level of
chance. We shall refer to this mean fractional rate of detecting the
correct directionality of true connections as “d-accuracy”. Some
methods (e.g., Full correlation) only output symmetric network
matrices, hence no results are shown for these methods.

Again, the general story told by this particular simulation is
reasonably reflective of many of our simulations. None of themethods
is very accurate, with Patel's τ performing best at estimating
directionality, reaching nearly 65% d-accuracy, all other methods
being close to chance.

We now discuss various sets of simulations, each testing a different
aspect of real-world data and experimental designs. The full set of
plots is included in the Supplementary Information; in the text below
we summarise the relevant findings from each simulation.

Basic simulation results

We start with a set of basic experimental/data scenarios. As
discussed above, Sim2 has 10 nodes, 10 min FMRI sessions for each
subject, TR=3 s, final added noise of 1%, and HRF variability of ±0.5 s.
Sim1 is the same, but with just 5 nodes. These two simulations are
referred to frequently in the following sections, as “baselines” against
which to compare the various changes we make in the network
scenarios. Sim3 is also the same, but with 15 nodes, organised in 3
clusters of 5 nodes. Sim4 is the same, but with 50 nodes, as shown in
Fig. 2.

The Sim2 results were summarised above; in particular, Partial
correlation, ICOV and the Bayes net methods perform excellently, with
a c-sensitivity of above 90%, while at the other end of the spectrum,
lag-based methods (Granger, etc.) perform extremely poorly, detect-
ing less than 20% of true network connections. None of the methods is
very accurate at estimating directionality, with Patel's τ performing
best, reaching nearly 65% d-accuracy. The results with 5 and 15 nodes
are extremely similar to those with 10.

With 50 nodes, the Bayes Net methods and Granger A were too
computationally intensive to be practical in our testing, and so are not
reported.4 Full correlation, ICOV λ=100 and Patel's κ all perform
excellently, at over 90% c-sensitivity. Full correlation performs slightly
better than Partial correlation (just over 80%), which is not very
surprising as now the overall fraction of indirect connections is lower
than with the smaller networks, aiding full correlation's results, while
the number of timeseries to regress out of each pair being tested by
partial correlation is much larger than with the smaller networks,
which presumably removes more signal from each pair. However,
with increased regularisation from the higher λ of 100, ICOVwas able
to ameliorate this, and perform better than Full correlation. No
methods gave impressive results in estimating directionality.

Sim17 shows results from the 10 node scenario, but this time with
reduced noise added to the BOLD data—just 0.1%. This reduction in
amplitude of noise by a factor of 10 reflects what onemight achieve by
averaging timeseries over multiple voxels—in the case of thermal
noise that is spatially uncorrelated, averaging over just 100 voxels
would be expected to give this reduction. Thismight, for example, be a
result of defining a spatial ROI, or by utilising one component's
timecourse from ICA, which in effect is averaging timecourses over
voxels present in a given component's spatial map. Somewhat
surprisingly, the results are very similar to Sim2, suggesting that (at
least in the range 0.1–1%), the exact amount of noise in the data does
not significantly affect network estimation). Slight exceptions are that
MI and Coherence B3 have an increased c-sensitivity of 78%; clearly
these measures benefit more than others from reduced noise levels,
but they are still significantly less sensitive than the best methods,
which have now reached as high as 97% c-sensitivity.
Effect of FMRI session length

We now consider the effect of varying the FMRI session length.
Sim5 contains 5 nodes and 60-min sessions (in reality this would not
be very pleasant for the subjects, but in general is possible).
Comparing this with Sim1, we see that most methods have improved
sensitivity, with all methods except for LiNGAM and the majority of
the lag-based methods achieving better than 80% c-sensitivity. The
single lag-based result that reaches 80% is Granger A3; however, from
the fact that the d-accuracy in this case is almost no better than
chance, we must conclude that it is not the lag-based causality
information that is driving this result, but simply the fact that
correlation between timeseries is bleeding into the Granger causality
measure (see further investigation of this effect below).

With respect to the estimation of directionality, the lag-based
methods are still performing poorly with the hour-long sessions.
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LiNGAM has now improved to 77%, with the increased number of
timepoints starting to help the temporal ICA to function well. Patel's τ
is largely unchanged, with all other methods still under 70% d-
accuracy. We also simulated hour-long sessions for 10 nodes (Sim6).
The results are very similar to those for 5 nodes, though LiNGAM is
reduced slightly, to 67%.

When we increased the sessions further, to just over 4 h (Sim7),
LiNGAMwas able to achieve the highest d-accuracy across all methods
in all of our tests (90%). Patel's τ bin0.75 was also impressive (79%),
with CCD at 71%.

The Gen Synch H directionality is well below chance (making a
significant number of directionality estimates in the wrong direction).
As discussed above, asymmetry in the Gen Synchmeasures is expected
to be potentially driven by other factors than just the underlying
causality, and this appears to be the case here.

Sim25 contains 5-min sessions, and Sim28 has 5-min sessions with
noise reduced to 0.1%. The reduced session time does not greatly affect
the results, but does reduce estimation quality a little, with the best
approaches still being Partial correlation, ICOV and the Bayes net
methods (c-sensitivity 70–78%). With the reduced noise level, results
improved towards the values seen in Sim1 (84–89%). As with Sim1,
directionality estimation is not very impressive from any of the
methods. This pattern develops further with 2.5-min sessions; Sim26
contains 2.5-min sessions, with the same best three methods having
c-sensitivity 57-59%, and Sim27 has 2.5-min sessions with noise 0.1%,
with the same best three methods having 71–76%.

To summarise the dependence of the best methods' c-sensitivity
on session duration, for the 5 nodes, 1% BOLD noise case:
60 min:100%, 10 min:95%, 5 min:77%, 2.5 min:59%.

Effect of global additive confound

The first “problem” that we introduced into the data was a global
additive confound—adding the same random timeseries to all nodes'
BOLD timeseries. There has been much discussion in the literature
regarding the nature of the global mean timeseries (i.e., whether it is
primarily valid neural-related signal, or uninteresting non-neural
physiological confound) and whether it should be subtracted before
any further analyses (Fox et al., 2009). The general consensus would
currently appear to be that as many specific confounds as possible
should be removed from the data (e.g., by estimating signal in white
matter and cerebrospinal fluid (CSF), and regressing this out of all
timeseries), but there is not clear agreement as to whether global
timeseries removal should be carried out.

Here we investigated the effect of an additive global timeseries
confound. From a real resting-FMRI dataset (36 subjects' 4D data
concatenated temporally in a common space), we estimated the
timeseries from approximately 100 functional parcels. The data had
originally been “cleaned” through the use of confound regressors
derived from CSF and white matter masks, as well as head motion
parameters. Further, we discarded ICA components which were
clearly artefactual. We took the mean of all 100 timecourses, and
estimated the standard deviation of this, std(mean(Ti)). We then
estimated the mean of the standard deviations of each individual
timecourse, mean(std(Ti)). The ratio std(mean(Ti))/mean(std(Ti))
was approximately 0.3, whereas in pure random noise data it would
be expected to be around 1 =

ffiffiffiffiffiffiffiffiffi

100
p

=0.1, roughly suggesting an upper
limit to the additive global effect of approximately 20% of the raw data
standard deviation.

Initial results with a global mean confound having 20% of the
amplitude of the “uncorrupted” data showed, somewhat surprisingly,
almost no change in the final c-sensitivity and d-accuracy results, so
we increased the confound fraction to 50%, generating Sim10. The
results are still almost unchanged, compared with Sim1, suggesting
that the potential presence of a global confound is not a problem.
However, looking at the separate distributions of TP and FP values, we
see that for some methods the distributions are significantly shifted
upwards, as one would expect from adding in a global confound. This
is particularly noticeable for Full correlation, not surprisingly. Because
both TP and FP distributions are shifted upwards, the c-sensitivity
results do not show a significant worsening, and this raises a potential
problem in our interpretation of these results (and later use of certain
network modelling methods); if we do not already know what the
global confound signal is, we cannot adjust for the altered FP
distribution, and hence cannot achieve the c-sensitivity results seen.
We are only able, here, to estimate c-sensitivity because we already
knowwhat the ground truth is, but in real experiments we would not.
However, all is not lost—we can see that with other modelling
methods (in particular the methods that performed the best in the
basic simulations—Partial correlation, ICOV and the Bayes net
methods), there is not a significant shift in the raw TP and FP
distributions. This is not surprising—for example, partial correlation
will be expected to remove (some fraction of) the global confound
from any pair of timeseries before they are correlated, because it is
present in all the other timeseries (Marrelec et al., 2006). These
results and considerations provide added strength to the argument for
using these approaches, as opposed to (e.g.) Full correlation.

In those simulations that add confounding processes into the data,
we did not regenerate the null distributions for the connectivity
measures, but used those derived from the matched simulations
without the confounds. We did this in order to make the TP and FP Z
score distributions more easily comparable across simulations, but
this has no effect on the quantitative measures of success (c-
sensitivity and d-accuracy).

Effect of shared inputs

The next “problem” that we introduced into the data wasmixing of
the external inputs feeding into the network. So far we have assumed
that each viewed node has its own independent external input. These
inputs can be thought of as neuronal “noise”, or as distinct sensory
inputs, or as inputs from other parts of the brain not included in the
set of viewed nodes. In the case of the latter two scenarios, there is the
real possibility that an external input could feed into more than one
viewed node, which could be expected to have a deleterious effect on
the network modelling, if this “sharing” of inputs is not modelled
(Larkin, 1971). For example, this could arise if one has imaged (or
considered) only certain parts of the brain.

Sim8 simulates this problem. In the previous simulations, the
external inputs feed into the viewed nodes with strength 1; in this
simulation, in addition, each external input may feed into any other
viewed node with strength 0.3, with the random probability of this
occurring being 20% for any one possible connection between external
input and viewed node. The results, compared with Sim1, show that
the presence of shared inputs is quite deleterious to all estimation
methods. Partial correlation and ICOV λ=5 fall respectively to 69% and
67% c-sensitivity, with all other methods being below 60%. The
directionality estimates, however, are largely unchanged from the
Sim1 results.

Sim9 applies the same sharing of inputs to 4-h sessions. Compared
with Sim7, We see all methods' c-sensitivity fall, but particularly the
Bayes net methods, which fall to less than 40%. However, the methods
that showed the best directionality estimation results in Sim7
(LiNGAM and Patel's τ bin0.75) still performed quite well (78% and
73% respectively).

Effect of inaccurate ROIs

The next problem we considered is the effect of mixing the BOLD
timeseries with each other. Whereas the previous section discussed
the mixing of inputs, this is in effect a mixing of outputs from the data
simulation. This scenario would arise, for example, if the spatial ROIs
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used to extract average timeseries for a brain region did not match
well the actual functional boundaries. This is very likely to happen to
some extent when using predefined ROIs that are not derived from
the data, for example when using atlas-based ROIs.

Sim11 simulates 10 nodes, and for each node's timeseries, mixes in a
relatively small amountof oneothernode's timeseries (randomly chosen,
but the same for all subjects), in proportion 0.8:0.2. The results are
extremely bad—every method gives lower than 20% c-sensitivity.

A less serious related scenario is when we have incorrect ROIs, but
these just result in mixing in of signals from brain areas not already
present in the set of ROIs used. For example, if the ROIs are spread
sparsely across the brain and not touching each other, then incorrect ROI
specification will in general not mix them together, but will mix in new,
unrelated signals. Sim12 shows the effects of mixing in unrelated
timeseries into each timeseries of interest (achieved, for each subject,
by using data from another subject), again in the ratio of 0.8:0.2. In this
case the additional “confounds” have almost no effect at all on the
networkmodelling,with the results looking almost identical to Sim2. This
is not very surprising, given that we have already established that the
results arenot very sensitive to addednoise,which is effectively allweare
adding here (albeit with more temporal structure than previously).

Effect of backwards connections

It is rarely the case that two brain regions are connected in one
direction only; there will generally be connections in both directions,
including those with “negative” connection strengths (implying
inhibition). However, it is not clear, in terms of gross, averaged
behaviour of information flow around a network, whether the
presence of backwards connections is in practice relevant. It is very
hard also to know how to insert such connections into our simulations
—for example, how strong should the backwards connections be, and
should they be positive or negative? In the absence of clear answers to
these questions, we chose, somewhat arbitrarily, to randomly select
half of the forwards connections, and add into those a negative
backwards connection of equal average strength (0.4±0.1).

These results are reported in Sim13. Compared with Sim1, all the
approaches that were performing well have heavily reduced sensi-
tivity, with the best methods being the Bayes Net approaches, at 64%
c-sensitivity. Interestingly, Coherence, Gen Synch andMI are no longer
significantly worse than the correlation measures, ICOV and Patel's κ,
all being around 50–55% c-sensitivity; this presumably is because the
former set of methods are relatively robust against the potentially
more complex relationships induced by the backward connections. No
methods performed well at estimating directionality in this simula-
tion (maximum d-accuracy being 62%), where estimated direction-
ality is compared against the positive, “forward” connection direction
—though of course, the interpretation in the cases where a backwards
connection is present is difficult.

Effect of cyclic connections

Sim14 shows the results from reversing the direction of the
connection between nodes 1 and 5 in the 5 node simulation. This
generates “cyclic causality”, which is theoretically a problem for many
of the global networkmodelling approaches such as most of the Bayes
net methods, as this breaks their modelling assumptions.

Somewhat surprisingly, compared with Sim1, this change makes
virtually no difference to any of the c-sensitivity measures. It does
reduce the d-accuracy values, although these were already low in
Sim1.

Effect of more connections

Sim16 shows the effect of using a denser set of connections in the 5
node simulation. As well as the original 5 out of 10 possible network
edges, we add in a further two more, leaving just 3 “missing” edges.
This therefore simulates the scenario of a very highly connected small
network. The results are very similar to Sim1, with a slight reduction
in c-sensitivity in the best methods. There is also very little change in
the d-accuracy results.

Effect of stronger connections, and investigation of lag-based
directionality estimation

Sim15 shows the effect of increasing the strength of the network
connections to a mean of 0.9 instead of 0.4. We set the noise to be
0.1%, so these results should be compared against Sim17. In this case
the previously most sensitive methods (Partial correlation, ICOV and
the Bayes net methods) remain relatively unchanged in c-sensitivity,
falling to 90–95%. Full correlation and Patel's κ fall further, to around
60%—presumably the increased connection strengths have increased
the sensitivity to detection of indirect connections. MI, Coherence and
Gen Synch are relatively unchanged, although notably, Partial MI is
increased to 85%, presumably because it is less sensitive to indirect
connections than MI. Lag-based methods are still performing very
poorly, the best reaching 34% c-sensitivity. With respect to estimating
directionality, Patel's τ, has increased to 78%, with Gen Synch rising to
68%.

The lag-based methods have improved d-accuracy, with a
maximum of 72% for GGC lag-10 and DC lag-10. However, the fact
that the existence of the connections was only estimated with a
maximum c-sensitivity of 34% suggests that the directionality results
may not be trustworthy (i.e. truly reflecting an estimation of causality
based on lag). In order to investigate more interpretably whether
concern here is justified, we simulated a two-node network (node 1
feeding into node 2), with otherwise the same parameters as Sim15.
The results were consistent with the above finding; some Granger
methods gave only chance-level results (e.g., Granger A1), but most
gave a reasonable level of correct directionality estimation. However,
when we reduced the neural lag to 0 and re-ran the simulation, the
results were qualitatively unchanged—the Granger methods that had
previously reported the “correct” causal direction continued to do so,
despite the absence of any lag between the two neural timeseries.
Furthermore, when we returned the lag to 50 ms, but now increased
the added noise to 1.5% for the first node only, the estimated causality
direction then became negative (i.e., the wrong direction was
estimated) for all Granger methods. All of these results were
replicated if we replaced the DCM forward model (including
nonlinear dynamics) with a simple shift for the neural lag, followed
by linear haemodynamic convolution. Unfortunately this demon-
strates how the interaction of haemodynamic smoothing and
measurement noise renders the lag-based methods generally unre-
liable for FMRI data. Gen Synch at model order 1 also showed the same
problems as seen with Granger, but did not show this with model
order 2.

Effect of having only one strong external input

Sim24 is the same as Sim15 (strong connections and low noise),
except that all nodes apart from node 1 had their external input
strengths reduced from 1 to 0.1. With this reduction in external inputs
and the low noise level, this simulation is passing the one primary
external source around the network with very little disturbance from
other sources or noise. The results become poor—none of themethods
had a c-sensitivity greater than 50%, and none had a d-accuracy
greater than 61%. One hopes that this particular simulation is not too
representative of reality! In general every node is so highly correlated
with every other node that it is hard for the methods to distinguish
direct from indirect connections. Of the methods that have so far been
performing the best, Partial correlation and ICOV λ=5do still generate
amongst the best results (c-sensitivity 46–48%), but not better than
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MI, Coherence and Gen Synch; the Bayes net models perform badly
(27%).

Sensitivity to connection strength changes

Sim21 tests how sensitive the different methods are at detecting
changes in connection strength across different subjects. In this case
we started with the Sim1 simulation, but halved the strength of the
network connections in 25 of the 50 subjects. We then performed a
two-group t-test on the raw TP connection strength measures. This
test is of relevance to researchers wishing to discriminate between
subjects on the basis of network connectivity, for example comparing
patients vs. controls.While we have only evaluated “univariate” group
comparisons here (i.e., testing each edge independently from each
other), there is a good chance that a more sensitive general approach
to network change detection will be “multivariate” (i.e., using all
edges simultaneously to find patterns of change).

The most sensitive method was Patel's κ, with t=7.4. Other
sensitive methods, with tN5, were Full correlation, Partial correlation,
ICOV, Gen Synch and most of the Bayes net methods.

Effect of nonstationary connection strength

Sim22 and Sim23 investigate the effect of nonstationarity of
connection strength between nodes. At the neural level, there is
evidence of connection strength varying over time (Popa et al., 2009;
de Pasquale et al., 2010); this was investigated for FMRI data in Chang
and Glover (2010).

In Sim23, we used 5 nodes, noise of 0.1%, strong connections (mean
0.9) and reduced strength of 0.3 for all external inputs apart from
node 1. There was no nonstationarity present in this simulation.
Partial correlation and ICOV perform the best, at around 80% c-
sensitivity, but the Bayes net methods do not perform so well, falling
to 60%. For directionality estimation, Patel's τ and Gen Synch perform
reasonably, having d-accuracy of around 70%.

Sim22 is the same as Sim23, except that the connection strength is
modulated over time by additional random processes. The strength of
connection between any two connected nodes is either unaffected, or
reduced to zero, according to the state of a random external bistable
process that is unique for that connection. The transition probabilities
of this modulating input are set such that the mean duration of
interrupted connections is around 30 s and the mean time of full
connections is about 20 s. The results are quite similar to Sim22, the
main difference being that the Bayes net methods improve quite a bit,
achieving the highest c-sensitivity (78%), slightly ahead of Partial
correlation and ICOV (both at 73%). We had expected that perhaps one
of the Coherence measures would show particular value (compared
with other methods) when faced with nonstationarity, but this was
not the case. The directionality estimates are largely unchanged,
though many of the lag-based methods reverse the mean estimated
directionality, another example of problematic inference using
temporal lag with FMRI.

Effect of HRF variability and low TR

A common criticism of lag-based methods for FMRI is that any
neural lag information is likely to be a) swamped by the haemody-
namic smoothing and b) rendered inestimable because of variabilities
in haemodynamic-induced delays. Our results so far support these
views, in that there is no evidence of the lag-based methods working
on realistic simulated FMRI data. In the following simulations, we
attempted to push the parameters of the simulations in different ways
to give the lag-based methods even better chances of succeeding
(though at the risk of becoming rather unrealistic in representing real
biology, experimental design and FMRI acquisitions).
Sim18 is the same as Sim1, except that we have removed all
haemodynamic lag variability. The results are unchanged—all lag-
based methods still perform very poorly both with respect to c-
sensitivity and d-accuracy.

Sim19 reduces the TR to 0.25 s (currently impractical to achieve in
whole-brain FMRI, but achievable for a few slices of data), sets the
noise to 0.1% and increases the neural lag to 100 ms. HRF variability is
set to 0.5 s. Sim20 is identical, except that the HRF variability is
removed. The results in the two cases are quite similar. The highest c-
sensitivity is achieved by Partial correlation, ICOV and GES (95–99%),
but some of the Granger approaches are close behind, achieving up to
89%, and giving impressive d-accuracy results. Because of our results
described above (and because it is suspicious that including HRF delay
variability that is large compared with the neural lag does not greatly
affect results), we ran simpler, two-node simulations, starting with
the same simulation parameters as in Sim19 and Sim20. When
including HRF variability, we still found that lag=0 results gave the
same “correct” causality, and that adding extra noise (as little as
0.15%) onto node 1 reversed the estimated causality direction. In
these very-low-TR, low-noise, 2-node tests, it is not until we remove
all HRF variability, or increase the neural lag to 0.3 s, that we start to
see stronger (correct) causality estimation than the lag=0 results,
and, even in these cases, simply adding extra noise onto node 1 still
reverses the estimated causality direction in the majority of tests. We
also found similar general problems with Gen Synch.

Summary across all simulations

Table 1 summarises the specifications for all 28 simulations, and
Figs. 4 and 5 show summaries of the dependence of all methods' c-
sensitivity and d-accuracy on the different simulation parameters.
Simulations 4 and 21 were excluded from these calculations (the former
because not all methods were run in that case, and the latter because it
was used to test group-difference performance rather than group-mean
performance). For each modelling method, and for each “subject”, a
multiple regression was fit to the 28 simulations' c-sensitivity and
(separately) d-accuracy values, with the different simulation parameters
as model covariates. We used binary indicator variables for the cases
where complex changes were applied, such as in the “global mean
confound” case. Simulations 19 and 20 reduced TR and increased neural
lag, so the effects of these are not separable, and the third regressor
models both effects together. Themodelfittingwas carriedout separately
for each of the 50 “subjects”, and the parameter estimates from each
regression were then summarised across subjects in terms of their effect
size (mean/standard deviation). The distribution of the data is probably
not Gaussian, and the relationship to certain covariates not likely to be
linear, but the final summary statistic (combining across subjects) is still
well-conditioned, and at least gives a semi-quantitative view of the
relative strengths and signs of thedependencies. The results aremostly as
one would expect; for example, session duration correlates strongly and
positively with c-sensitivity for virtually all methods. For the most
successfulmethods, sessionduration ismore important thanTR,which in
turn is more important than noise level (the fact that neural lag was also
varied alongwith the TR is not relevant in these cases). Somepatterns are
more complex, such as the effect of the number of nodes and the addition
of a global mean confound. The effect of bad ROIs is notable as being
particularly deleterious to the results from almost all methods. With
respect todirectionality, themost striking result is the strongdependency
of the most successful methods on session duration.

We conclude with two figures that summarise the overall perfor-
mances of the different network modelling methods across all simula-
tions (except Sim4, which was not run for all methods). For each class of
method we take the best result, for each simulation, over all variants of
that method (for example, putting all the Bayes net methods together
into a single class). This creates a slight bias in favour of those methods
withmanyvariants tested (although ingeneral not in a significantway, as
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most variants of a given class of method performed similarly), but allows
us to create simple summaryfigures. Fig. 6 shows the summary results for
all methods' sensitivity to correctly detecting the presence of a network
connection. The thick black line shows the median result across the
simulations. Fig. 7 shows the summary results for allmethods' accuracy in
detecting network connection direction. Again the thick black line shows
the median result across simulations. The grey line shows the
approximate level above which accuracy is significantly better than
chance, i.e., the 95th percentile of the appropriate binomial distribution
(the level shown is correct for 50 subjects×5 connections, and falls very
slightly for larger numbers of nodes). Patel's τ performs the best overall,
and LiNGAM is the onlymethod to achieve over 80% accuracy (in the case
of the longest timeseries). As discussed above,we have to doubtwhether
theGen Synch andGranger results here are valid results drivenby the true
underlying causality (as opposed to confounding asymmetries in the
timeseries characteristics).

Discussion

Although some of the different data scenarios generated quite
variable sets of results, a general picture does emerge, that should be
applicable across a large fraction of real FMRI experiments.

With respect to estimating the presence of a network connection,
the overall results suggest that the “Top-3” (Partial correlation, ICOV
and the Bayes net methods) often perform excellently, with a
sensitivity of more than 90% on “typical” data. The Bayes net methods
are as good as, or slightly better than, Partial correlation and ICOV in
many scenarios, but do not seem to be in general quite as robust when
faced with certain problematic scenarios. Partial correlation and ICOV
often give very similar results, but with an increasing number of
nodes, the regularisation in ICOV starts to show some benefit, as long
as λ is increased accordingly. Full correlation and Patel's κ perform a
little less well than the Top-3 on typical data, and often suffer more
when faced with problematic scenarios. MI, Coherence and Gen Synch
are significantly less sensitive, often detecting less than 50% of true
connections. Lag-based methods (Granger, PDC and DTF) perform
extremely poorly, with c-sensitivity of under 20%. LiNGAM performs
poorly for “typical-length” FMRI timeseries, as it requires a larger
number of timepoints to function well.

The sensitivity of detecting thepresenceof anetwork connectiondoes
depend on the length of the FMRI sessions, but already achieving (for the
best methods) 95% with 10 min sessions. To summarise the dependence
of the best methods' c-sensitivity on session duration, for the 5 nodes, 1%
BOLD noise case: 60 min:100%, 10 min:95%, 5 min:77%, 2.5 min:59%.

With respect to the estimation of network connection direction-
ality, high levels of accuracy are harder to achieve than just estimating
the presence of the connection. For “typical” datasets, none of the
methods is very accurate, though Patel's τ does achieve around 70%
accuracy (one should bear in mind that 50% is chance level). Overall,
this method performed better than all others.We can hope to improve
on this accuracy in direction estimation, particularly through mini-
mising noise levels and maximising session duration. Lag-based
methods and general synchronisation often give spurious direction-
ality estimation, driven by other factors in the data than the neural lag
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or true direction of information flow; the sensitivity to effects such as
small noise differentials in different nodes is a serious problem.

The fact that the methods based on covariance/correlation
(between different nodes' timeseries) performed significantly better
than those based on higher-order statistics, phase, or temporal lag, is
indicative that the relevant signal in BOLD data is relatively close to
being Gaussian, i.e., most of the useful signal lies in the variance. This
is primarily because the haemodynamic blurring removesmuch of the
structured signal of interest from the original neural processes. In
terms of estimating directionality, no aspects of the data contain very
powerful cues, but it would seem that the best we can do (given
typical current datasets) is to estimate directionality not from lag or
complex modelling of the full network covariance structure, but from
the higher-order statistics (kurtosis, skew, etc.). This is in effect what
is driving both LiNGAM and Patel's τ. Future work might look to
optimise the use of the higher-order statistics specifically for the
scenario of estimating directionality from BOLD data.

With respect to specific confounds that may appear in the data;
some confounds do surprisingly little damage to the best modelling
approaches, while others render all methods mostly unusable. A
global additive confound, even with relatively high amplitude, does
little harm to the accuracies of the Top-3 methods. “Shared” external
inputs are slightly more of a problem for Bayes net methods than
Partial Correlation and ICOV, although directionality estimation by the
Bayes net methods was not badly affected. Inaccurate ROI specifica-
tion, even by as little as 20%, gives extremely poor results—every
method gives lower than 20% sensitivity to detecting the presence of
connections. This emphasises the great importance of determining
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Fig. 6. Sensitivity to correctly detecting the presence of a network connection; summary over
ROIs that are appropriate for the data, and speaks against using atlas-
based ROIs. However this issue is less of a problem when the ROIs of
interest are not spatially neighbouring, because in this scenario ROI
inaccuracy just adds noise, rather thanmixing the timeseries together.

Cyclic connections are not too much of a problem for connection-
presence sensitivity, and neither was an increased “density” of
connections. Increased network connection strengths (∼0.9 instead
of ∼0.4) did not change the overall results greatly, although the
accuracy of estimating directionality does suffer, with Patel's τ
performing the best. With only one strong input to the network
(implying also no neural “noise” feeding into any nodes other than
node 1), all methods suffer badly, with Partial correlation and ICOV
performing the best. In the presence of network-connection-strength
temporal nonstationarity, the Top-3 methods are still performing the
best, and achieve good results.

It is hard to know specifically how to simulate “backwards” neural
connections for FMRI data, but our limited results suggest that these
can reduce the accuracy of the network modelling. However, the Top-
3 approaches were still the strongest, with Bayes nets slightly ahead.
When interpreting network connections that are estimated as
negative, one should bear in mind that these do not necessarily
represent “inhibition”, but can also be induced to be negative (in fact,
more generally, reverse sign) by certain analysis methodologies; for
example, under certain circumstances, network matrix elements that
would be estimated as positive by full correlationmay be estimated as
negative by partial correlation (Marrelec et al., 2009). Until further
experimental and simulation validations are carried out that specif-
ically look into these issues, including the interpretability of negative
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(“inhibitory”) connections, it may not be wise to assume that
apparently significant negative connections are real.

The lag-based methods performed very poorly, and this deserves a
little discussion, as these methods are currently used regularly in
FMRI analysis. It has been noted (Friston, 2009) that variations in
haemodynamic lag across brain regions are likely to swamp any
causal lag in the underlying neural timeseries, as they are generally at
least an order of magnitude larger (except possibly in rare cases
where certain cognitive experiments may induce the largest lags
between functional units). This concern was noted in one of the
earliest papers applying Granger to FMRI data (Roebroeck et al.,
2005), where it was stated: “…one should rule out the possibility that
influence found from one area to another based on temporal
difference in signal variation is due to a systematic difference in the
hemodynamic lag at the two areas. A possible approach to exclude
this confound is to show that the measured influence varies with
experimental condition or cognitive context.” Such an approach relies
on a linear (or well-modelled) transfer function between neural
activity and the BOLD signal, including full knowledge of how varying
experimental condition changes this transfer function. In the case of
resting FMRI timeseries, and in many task FMRI experiments, we do
not have the luxury of varying the experimental context in a suitable
way that guarantees no changes in haemodynamics. Even without the
HRF variability, the blurring effect of the HRF is expected to reduce
any lag information present in the neural timeseries to insignificance,
for the temporal neural lags seen in most experiments. These issues
are discussed further in recent papers (Roebroeck et al., in press-a,
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Fig. 7. Accuracy in detecting network connection direction; summary over simulations and
shows the level above which accuracy is significantly better than chance.
in press-b; Friston, in press; David, in press). However the major
concerns described above have still not been satisfactorily answered
in the literature, except to point to the results of certain simulations,
which would appear to show successful causality estimation, but
which are likely to be spurious, as discussed below.

The spurious causality estimation that is still seen in the absence of
HRF variability most likely relates to various problems described in the
Granger literature (Tiao andWei, 1976;Wei, 1978;Weiss, 1984;Nalatore
et al., 2007; Nolte et al., 2008); it is known that measurement noise can
reverse the estimation of causality direction, and that temporal
smoothing can mean that correlated timeseries are estimated to
“cause” each other. These known theoretical results probably explain
the various problematic results we saw in our simulations even in the
absence of HRF variability, such as the estimation of causality evenwhen
neural lag was reduced to zero, and the adding of (small/realistic
amounts of) measurement noise reversing the estimated direction of
causality. It is certainly possible that non-neural noise components (both
physiological and scanner-related) can cause different image regions to
have different noise characteristics (including amplitude), and hence this
concern is a real one in practice, not just in theory and simulations. There
is hope that these issues couldbeameliorated throughmore sophisticated
modelling (Nalatore et al., 2007; Havlicek et al., 2010; Deshpande et al.,
2010a), for example, using Kalman-based noise modelling, and through
Granger measures that model out the effects of lag-zero covariance.
However, it seems unlikely that (uncertainty in) haemodynamic lag can
be robustly distinguished from lags causedbyneural delays through such
modelling, and hence one of the major problems would remain.
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Previously published simulations suggesting successful estimation of
lag-based causality in FMRI data most likely suffer from the various
problems discussed above, including: not adding HRF variability into the
simulation, adding neural lags that are unrealistically long for the
majority of neural connections, and not testing whether reducing the
neural lag to zero in the simulations shows spurious causality. For
example, in Deshpande et al. (2010b), the causality graphs, worryingly,
oftendonot fall to zero for zeroneural lag, and the results in general seem
to only support robust (safe) causality estimation for neural lags of
hundreds of milliseconds. Furthermore, in their four-node network
simulations, two of the four connectionswere apparently simulatedwith
lags of tens of seconds.5 Another example is Havlicek et al. (2010), where
an impressive methodology is developed that aims to deal with
nonstationary effects in the data. The authors begin by testing their
methodology against simulated data; however, the simulations are
problematic, as an unrealistically long lag (2 s) is inserted between the
simulated timeseries, themethod is not tested against zero-lag simulated
data (to confirm that null data gives a null result), and it is not shown
whether the method can distinguish between neural lags and varying
haemodynamic lags across regions.

Although our results suggest that in general lag-basedmethods are not
useful when applied to FMRI data, this is not to say that they can never
work with carefully generated and interpreted FMRI data. It is possible
that for those (relatively rare) functional connections whose effective
neural lags are greater than 100 ms, then with very low TR (probably
limiting thefield-of-view) andhighSNR, and if thehaemodynamic lag can
be accurately pre-characterised for each region of interest and for every
experimental context of relevance, then in theory lag-based neural
causality from FMRI data may be estimable. For example, David et al.
(2008) show that lag-based causality can give reasonable results after
deconvolving the HRF, with the timing of the HRF estimated through the
use of electrophysiological data acquired simultaneously. In another
example, Rogers et al. (2010) show that neural lags as short as 100 ms
should be estimable between two areas from the BOLD timecourses in the
case when the two areas in question have (presumably) identical HRFs
(left and right V1), and using high field strength (7 T) and low TR
(250 ms).

By generating realistic simulated data we are able to test different
methods' sensitivities to detecting network connections, comparing
estimated results against the ground truth used to drive the
simulations. We have thus been able to control not only the “full
null” false positive rate of connection detection in the absence of any
true positives, but also correct for the (generally increased) rate of false
positives induced by the presence of true connections (i.e., evaluating
the specificity of each method in distinguishing direct from indirect
connections). When a network modelling method is applied to new,
real data, it is important to be able to estimate the significance of
estimation connections (whether considering connection presence,
strength or directionality). For methods where the two kinds of null
distributions particularly diverge (e.g., full correlation), it can
potentially be hard tomake accurate inference, as the null distribution
in the presence of true connections may be hard to estimate. Certain
network scenarios will exacerbate this problem, as seen in our results,
such as increasing connection strengths and density of connections.
The use of surrogate data (“null data” generated to have similar
characteristics to the real data) may help, possibly in conjunctionwith
a network simulation such as those utilised in this work; however,
valid surrogate data can be difficult to generate, as seen for example in
the (surrogate-corrected) problematic results in Deshpande et al.
(2010b), described above. The methods that gave the best results
overall in our tests beat the “second-best” methods (such as full
5 It is clear from consideration of Figs. 1 and 2 that for two of the four network
connections, the neural lags are of the same order as the lengths of the timeseries, so
either the neural lags are tens of seconds, or the timeseries are too short to be
meaningful. In either case, the network simulation results are not easily interpretable.
correlation) primarily because they were the most successful at
distinguishing direct from indirect connections, and for the same
reason their “full null” distributions need the least correction when
true connections are present (making it easier to achieve valid
inference on their outputs when applied to real data). Closely related
to these questions is whether any given method's own estimates of
statistical significance (for example, p-values derived from parametric
assumptions regarding a method's estimated connection strength or
directionality) are accurate. We have not needed to utilise any
method's own associated (or “built-in”) approach for estimating
specificity, because we have been able to use the ground truths to
estimate false-positive rates empirically; it would be interesting to
investigate whether different methods' own claimed p-values are
accurate, but this is outside the scope of this paper (and of course can
be confounded, for some methods, by the additional false positives
that can be induced by true positives, as discussed above).

We have not considered any specific multi-subject modelling
approaches here (for example, as seen in Ramsey et al., 2010), as we
have concentrated on evaluating the different modelling methods
when used to estimate functional brain networks from single subject
datasets; we felt that this is a primary question of interest, needing
some clear answers before considering possible multi-subject mod-
elling approaches. A question will arise as to whether the methods
(such as LiNGAM) that require a relatively large number of timepoints
to function well would give good results simply by concatenating
timeseries across subjects; this may prove to be the case, although
such an approach would then restrict the ability to use simple
methods (such as cross-subject mixed-effects modelling of the
estimated network parameters) to determine the reliability of the
group-estimated network.

To conclude, we have carried out a complex, rich, quantitative set
of simulations with a realistic model for FMRI timeseries; we have
investigated a wide range of analysis methodologies in order to
determine which are the most sensitive at detecting direct network
functional connections and the direction of information flow carried
by them. We have included various problematic elements in the
simulations, in order to evaluate the robustness of the various
network modelling methods. Our results show that lag-based
approaches perform very poorly. However there are several methods
that can give high sensitivity to network connection estimation on
good quality FMRI data, in particular partial correlation, regularised
inverse covariance estimation and several Bayes net methods. With
respect to estimating connection directionality, Patel's τ can be
reasonably successful.

All simulated BOLD timeseries and ground-truth networkmatrices
are freely available from www.fmrib.ox.ac.uk/analysis/netsim—the
authors will be interested to receive feedback on the simulations,
methods tested and results, and will post updates on this website.

Supplementarymaterials related to this article can be found online at
doi:10.1016/j.neuroimage.2010.08.063.
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References

Baccalá, L., Sameshima, K., 2001. Partial directed coherence: a new concept in neural
structure determination. Biol. Cybern. 84 (6), 463–474.

Banerjee, O., El Ghaoui, L., d'Aspremont, A., Natsoulis, G., 2006. Convex optimization
techniques for fitting sparse Gaussian graphical models. Proceedings of the 23rd
International Conference on Machine Learning. ACM, p. 96.

Buxton, R., Wong, E., Frank, L., 1998. Dynamics of blood flow and oxygenation changes
during brain activation: the balloon model. Magn. Reson. Med. 39, 855–864.

Chang, C., Glover, G., 2010. Time-frequency dynamics of resting-state brain connectivity
measured with fMRI. Neuroimage 50, 81–98.

Chang, C., Thomason, M., Glover, G., 2008. Mapping and correction of vascular
hemodynamic latency in the BOLD signal. Neuroimage 43, 90–102.

Chickering, D., 2003. Optimal structure identification with greedy search. J. Mach.
Learn. Res. 3, 507–554.

Daunizeau, J., Friston, K., Kiebel, S., 2009. Variational Bayesian identification and
prediction of stochastic nonlinear dynamic causal models. Phys. D Nonlinear
Phenom. 238 (21), 2089–2118.

Dauwels, J., Vialatte, F., Musha, T., Cichocki, A., 2010. A comparative study of synchrony
measures for theearlydiagnosisofAlzheimer'sdiseasebasedonEEG.Neuroimage49(1),
668–693.

David, O., in press. fMRI connectivity, meaning and empiricism: Comments on:
Roebroeck et al. The identification of interacting networks in the brain using fMRI:
model selection, causality and deconvolution. NeuroImage, Corrected Proof:–.

David, O., Guillemain, I., Saillet, S., Reyt, S., Deransart, C., Segebarth, C., Depaulis, A.,
2008. Identifying neural drivers with functional MRI: an electrophysiological
validation. PLoS Biol. 6 (12), e315.

de Pasquale, F., Della Penna, S., Snyder, A., Lewis, C., Mantini, D., Marzetti, L., Belardinelli, P.,
Ciancetta, L., Pizzella, V., Romani, G., Corbetta, M., 2010. Temporal dynamics of
spontaneousMEG activity in brain networks. Proc. Natl Acad. Sci. 107 (13), 6040–6045.

Deshpande, G., Sathian, K., Hu, X., 2010. Assessing and compensating for zero-lag
correlation effects in time-lagged Granger causality analysis of fMRI. IEEE Trans.
Biomed. Eng. 57 (6), 1446–1456.

Deshpande, G., Sathian, K., Hu, X., 2010. Effect of hemodynamic variability on Granger
causality analysis of fMRI. Neuroimage 52 (3), 884–896.

Fox, M., Zhang, D., Snyder, A., Raichle, M., 2009. The global signal and observed
anticorrelated resting state brain networks. J. Neurophysiol. 101 (6), 3270–3283.

Freenor, M. and Glymour, C., 2010. Searching the DCM model space, and some
generalizations. NeuroImage. In submission.

Friedman, J., Hastie, T., Tibshirani, R., 2008. Sparse inverse covariance estimation with
the Graphical Lasso. Biostat 9 (3), 432–441.

Friston, K., 1994. Functional and effective connectivity in neuroimaging: a synthesis.
Hum. Brain Mapp. 2, 56–78.

Friston, K., 2009. Causal modelling and brain connectivity in functional magnetic
resonance imaging. PLoS Biol. 7 (2), e1000033.

Friston, K., in press. Dynamic causal modeling and Granger causality. Comments on: The
identification of interacting networks in the brain using fMRI: model selection,
causality and deconvolution. NeuroImage, Corrected Proof:–.

Friston, K.J., Harrison, L., Penny, W., 2003. Dynamic causal modelling. Neuroimage 19 (3),
1273–1302.

Geweke, J.F., 1984. Measures of conditional linear dependence and feedback between
time series. J. Am. Stat. Assoc. 79 (388), 907–915.

Goebel, R., Roebroeck, A., Kim, D.-S., Formisano, E., 2003. Investigating directed cortical
interactions in time-resolved fMRI data using vector autoregressive modeling and
Granger causality mapping. Magn. Reson. Imaging 21 (10), 1251–1261.

Granger, C.W.J., 1969. Investigating causal relations by econometric models and cross-
spectral methods. Econometrica 37 (3), 424–438.

Grinsted, A., Moore, J., Jevrejeva, S., 2004. Application of the cross wavelet transform and
wavelet coherence to geophysical time series. Nonlinear Processes Geophys. 11 (5/6),
561–566.

Guo, S., Seth, A.K., Kendrick, K.M., Zhou, C., Feng, J., 2008. Partial Granger causality—
eliminating exogenous inputs and latent variables. J. Neurosci. Meth. 172 (1), 79–93.

Handwerker, D., Ollinger, J., D'Esposito, M., 2004. Variation of BOLD hemodynamic responses
across subjects and brain regions and their effects on statistical analyses. Neuroimage 21,
1639–1651.
Havlicek, M., Jan, J., Brazdil, M., Calhoun, V.D., 2010. Dynamic Granger causality based
on Kalman filter for evaluation of functional network connectivity in fMRI data.
NeuroImage 53 (1), 65–77.

Kamiński, M., Blinowska, K., Szelenberger, W., 1997. Topographic analysis of coherence
and propagation of EEG activity during sleep and wakefulness. Electroencephalogr.
Clin. Neurophysiol. 102 (3), 216–227.

Kiviniemi, V., Kantola, J.-H., Jauhiainen, J., Hyvärinen, A., Tervonen, O., 2003.
Independent component analysis of nondeterministic fMRI signal sources. Neuro-
image 19, 253–260.

Kiviniemi, V., Starck, T., Remes, J., Long, X., Nikkinen, J., Haapea, M., Veijola, J., Moilanen,
I., Isohanni, M., Zang, Y.-F., Tervonen, O., 2009. Functional segmentation of the brain
cortex using high model order group PICA. Hum. Brain Mapp. 30 (12), 3865–3886.

Larkin, P., 1971. This Be The Verse. New Humanist. August.
Marrelec, G., Kim, J., Doyon, J., Horwitz, B., 2009. Large-scale neural model validation of

partial correlation analysis for effective connectivity investigation in functional
MRI. Hum. Brain Mapp. 30 (3), 941–950.

Marrelec, G., Krainik, A., Duffau, H., Pélégrini-Issac, M., Lehéricy, S., Doyon, J., Benali, H.,
2006. Partial correlation for functional brain interactivity investigation in
functional MRI. Neuroimage 32, 228–237.

McIntosh, A., Gonzales-Lima, F., 1994. Structural equation modeling and its application
to network analysis in functional brain imaging. Hum. Brain Mapp. 2, 2–22.

Meek, C., 1995. Causal inference and causal explanation with background knowledge.
Proceedings of the 11th Annual Conference on Uncertainty in Artificial Intelligence,
pp. 403–410.

Nalatore, H., Ding, M., Rangarajan, G., 2007. Mitigating the effects of measurement noise
on Granger causality. Phys. Rev. E 75 (3), 31123.1–31123.10.

Nolte, G., Ziehe, A., Nikulin, V., Schlögl, A., Krämer, N., Brismar, T., Müller, K., 2008.
Robustly estimating the flow direction of information in complex physical systems.
Phys. Rev. Lett. 100 (23), 234101.1–234101.4.

Patel, R., Bowman, F., Rilling, J., 2006. A Bayesian approach to determining connectivity
of the human brain. Hum. Brain Mapp. 27, 267–276.

Pereda, E., Quiroga, R., Bhattacharya, J., 2005. Nonlinear multivariate analysis of
neurophysiological signals. Prog. Neurobiol. 77 (1–2), 1–37.

Popa, D., Popescu, A., Paré, D., 2009. Contrasting activity profile of two distributed
cortical networks as a function of attentional demands. J. Neurosci. 29 (4),
1191–1201.

Quian Quiroga, R., Kraskov, A., Kreuz, T., Grassberger, P., 2002. Performance of different
synchronization measures in real data: a case study on electroencephalographic
signals. Phys. Rev. E 65 (4), 41903.

Ramsey, J., Hanson, S., Hanson, C., Halchenko, Y., Poldrack, R., Glymour, C., 2010. Six
problems for causal inference from fMRI. Neuroimage 49 (2), 1545–1558.

Ramsey, J., Zhang, J., Spirtes, P., 2006. Adjacency-faithfulness and conservative causal
inference. Proceedings of the 22nd Annual Conference on Uncertainty in Artificial
Intelligence.

Richardson, T., Spirtes, P., 2001. Automated discovery of linear feedback models. In:
Glymour, C., Cooper, G. (Eds.), Computation, Causation, and Causality. MIT Press.

Ringo, J., Doty, R., Demeter, S., Simard, P., 1994. Time is of the essence: a conjecture that
hemispheric specialization arises from interhemispheric conduction delay. Cereb.
Cortex 4, 331–343.

Roebroeck, A., Formisano, E., Goebel, R., 2005. Mapping directed influence over the
brain using Granger causality and fMRI. Neuroimage 25 (1), 230–242.

Roebroeck, A., Formisano, E., and Goebel, R., in press. Reply to Friston and David: After
comments on: The identification of interacting networks in the brain using fMRI:
model selection, causality and deconvolution. NeuroImage, Corrected Proof:–.

Roebroeck, A., Formisano, E., and Goebel, R., in press. The identification of interacting
networks in the brain using fMRI: model selection, causality and deconvolution.
NeuroImage, Corrected Proof:–.

Rogers, B.P., Katwal, S.B., Morgan, V.L., Asplund, C.L., Gore, J.C., 2010. Functional MRI and
multivariate autoregressive models. Magnetic Resonance Imaging 28 (8),
1058–1065.

Seth, A.K., 2010. AMATLAB toolbox for Granger causal connectivity analysis. J. Neurosci.
Meth. 186 (2), 262–273.

Shannon, C., 1948. Amathematical theory of communication. Bell Syst. Tech. J. 27, 379–423.
Shimizu, S., Hoyer, P.O., Hyvärinen, A., Kerminen, A., 2006. A linear non-Gaussian acyclic

model for causal discovery. J. Mach. Learn. Res. 7, 2003–2030.
Tiao, G., Wei, W., 1976. Effect of temporal aggregation on the dynamic relationship of

two time series variables. Biometrika 63 (3), 513–523.
Wei, W., 1978. The effect of temporal aggregation on parameter estimation in

distributed lag model. J. Econometrics 8 (2), 237–246.
Weiss, A., 1984. Systematic sampling and temporal aggregation in time series models. J.

Econometrics 26 (3), 271–281.
Witt, S., Meyerand, M., 2009. The effects of computational method, data modeling, and

TR on effective connectivity results. Brain Imaging Behav. 3, 220–231.
Wright, S., 1920. Correlation and causation. J. Agric. Res. 20, 557–585.
Zhang, J., 2008. On the completeness of orientation rules for causal discovery in the

presence of latent confounders and selection bias. Artif. Intell. 172, 1873–1896.
Zhou, D., Thompson, W.K., Siegle, G., 2009. MATLAB toolbox for functional connectivity.

Neuroimage 47 (4), 1590–1607.


	Network modelling methods for FMRI
	Introduction
	Methods: Simulations
	Methods: Network modelling methods tested
	Not tested: DCM and SEM
	Correlation and Partial correlation
	Regularised inverse covariance
	Mutual information
	Granger causality and related lag-based measures
	Coherence
	Generalised synchronisation
	Patel's conditional dependence measures
	Bayes net methods
	LiNGAM

	Results
	Basic simulation results
	Effect of FMRI session length
	Effect of global additive confound
	Effect of shared inputs
	Effect of inaccurate ROIs
	Effect of backwards connections
	Effect of cyclic connections
	Effect of more connections
	Effect of stronger connections, and investigation of lag-based �directionality estimation
	Effect of having only one strong external input
	Sensitivity to connection strength changes
	Effect of nonstationary connection strength
	Effect of HRF variability and low TR
	Summary across all simulations

	Discussion
	Acknowledgments
	References


